Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Res (Stuttg) ; 69(12): 671-682, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31698495

ABSTRACT

In this study, amino-oxy-diarylquinolines were designed using structure-guided molecular hybridization strategy and fusing of the pharmacophore templates of nevirapine (NVP), efavirenz (EFV), etravirine (ETV, TMC125) and rilpivirine (RPV, TMC278). The anti-HIV-1 reverse transcriptase (RT) activity was evaluated using standard ELISA method, and the cytotoxic activity was performed using MTT and XTT assays. The primary bioassay results indicated that 2-amino-4-oxy-diarylquinolines possess moderate inhibitory properties against HIV-1 RT. Molecular docking results showed that 2-amino-4-oxy-diarylquinolines 8(A-D): interacted with the Lys101 and His235 residue though hydrogen bonding and interacted with Tyr318 residue though π-π stacking in HIV-1 RT. Furthermore, 8A: and 8D: were the most potent anti-HIV agents among the designed and synthesized compounds, and their inhibition rates were 34.0% and 39.7% at 1 µM concentration. Interestingly, 8A: was highly cytotoxicity against MOLT-3 (acute lymphoblastic leukemia), with an IC50 of 4.63±0.62 µg/mL, which was similar with that in EFV and TMC278 (IC50 7.76±0.37 and 1.57±0.20 µg/ml, respectively). Therefore, these analogs of the synthesized compounds can serve as excellent bases for the development of new anti-HIV-1 agents in the near future.


Subject(s)
Diarylquinolines/chemistry , Diarylquinolines/pharmacology , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Alkynes , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Benzoxazines/chemistry , Benzoxazines/pharmacology , Cell Line, Tumor , Cyclopropanes , HIV Infections/drug therapy , HIV Infections/metabolism , Humans , Molecular Docking Simulation , Nevirapine/chemistry , Nevirapine/pharmacology , Nitriles , Pyridazines/chemistry , Pyridazines/pharmacology , Pyrimidines , Rilpivirine/chemistry , Rilpivirine/pharmacology
2.
Planta Med ; 77(13): 1519-24, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21305448

ABSTRACT

The cytotoxic activity of five alkaloids, namely 4,5-dioxo-dehydrocrebanine (1), dehydrocrebanine (2), crebanine (3), oxostephanine (4), and thailandine (5) isolated from the tuber and leaves of Stephania venosa (Blume) Spreng was investigated. Thailandine showed the strongest activity against lung carcinoma cells (A549) (IC50 of 0.30 µg/mL) with very low cytotoxicity against normal embryonic lung cells (MRC-5). Thailandine also demonstrated strong activity against Plasmodium falciparum, K1 strain (IC50 of 20 ng/mL), and Mycobacterium tuberculosis H(37)Ra (MIC of 6.25 µg/mL) as well as gram-positive bacteria such as Streptococcus pneumoniae and Staphylococcus aureus. Oxostephanine exhibited strong activity against breast cancer (BC) and acute lymphoblastic leukemia cells (MOLT-3) with an IC50 of 0.24 and 0.71 µg/mL, respectively, and exhibited very low cytotoxicity against MRC-5 cells. Dehydrocrebanine demonstrated strong activity against promyelocytic leukemia cells (HL-60) with an IC50 of 2.14 µg/mL whereas crebanine showed weak activity against cancer cell lines. However, both of them showed cytotoxicity against MRC-5 cells.


Subject(s)
Alkaloids/pharmacology , Anti-Infective Agents/pharmacology , Aporphines/pharmacology , Plant Extracts/pharmacology , Stephania/chemistry , Alkaloids/chemistry , Alkaloids/isolation & purification , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Aporphines/chemistry , Aporphines/isolation & purification , Aspergillus fumigatus/drug effects , Candida/drug effects , Cell Line, Tumor , Female , Gram-Positive Bacteria/drug effects , Herpesvirus 1, Human/drug effects , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Phialophora/drug effects , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Tubers/chemistry , Plasmodium falciparum/drug effects , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL
...