Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
EClinicalMedicine ; 49: 101495, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35702332

ABSTRACT

Background: Global healthcare systems continue to be challenged by the COVID-19 pandemic, and there is a need for clinical assays that can help optimise resource allocation, support treatment decisions, and accelerate the development and evaluation of new therapies. Methods: We developed a multiplexed proteomics assay for determining disease severity and prognosis in COVID-19. The assay quantifies up to 50 peptides, derived from 30 known and newly introduced COVID-19-related protein markers, in a single measurement using routine-lab compatible analytical flow rate liquid chromatography and multiple reaction monitoring (LC-MRM). We conducted two observational studies in patients with COVID-19 hospitalised at Charité - Universitätsmedizin Berlin, Germany before (from March 1 to 26, 2020, n=30) and after (from April 4 to November 19, 2020, n=164) dexamethasone became standard of care. The study is registered in the German and the WHO International Clinical Trials Registry (DRKS00021688). Findings: The assay produces reproducible (median inter-batch CV of 10.9%) absolute quantification of 47 peptides with high sensitivity (median LLOQ of 143 ng/ml) and accuracy (median 96.8%). In both studies, the assay reproducibly captured hallmarks of COVID-19 infection and severity, as it distinguished healthy individuals, mild, moderate, and severe COVID-19. In the post-dexamethasone cohort, the assay predicted survival with an accuracy of 0.83 (108/130), and death with an accuracy of 0.76 (26/34) in the median 2.5 weeks before the outcome, thereby outperforming compound clinical risk assessments such as SOFA, APACHE II, and ABCS scores. Interpretation: Disease severity and clinical outcomes of patients with COVID-19 can be stratified and predicted by the routine-applicable panel assay that combines known and novel COVID-19 biomarkers. The prognostic value of this assay should be prospectively assessed in larger patient cohorts for future support of clinical decisions, including evaluation of sample flow in routine setting. The possibility to objectively classify COVID-19 severity can be helpful for monitoring of novel therapies, especially in early clinical trials. Funding: This research was funded in part by the European Research Council (ERC) under grant agreement ERC-SyG-2020 951475 (to M.R) and by the Wellcome Trust (IA 200829/Z/16/Z to M.R.). The work was further supported by the Ministry of Education and Research (BMBF) as part of the National Research Node 'Mass Spectrometry in Systems Medicine (MSCoresys)', under grant agreements 031L0220 and 161L0221. J.H. was supported by a Swiss National Science Foundation (SNSF) Postdoc Mobility fellowship (project number 191052). This study was further supported by the BMBF grant NaFoUniMedCOVID-19 - NUM-NAPKON, FKZ: 01KX2021. The study was co-funded by the UK's innovation agency, Innovate UK, under project numbers 75594 and 56328.

2.
Nat Med ; 24(9): 1317-1323, 2018 09.
Article in English | MEDLINE | ID: mdl-30013199

ABSTRACT

For inherited genetic diseases, fetal gene therapy offers the potential of prophylaxis against early, irreversible and lethal pathological change. To explore this, we studied neuronopathic Gaucher disease (nGD), caused by mutations in GBA. In adult patients, the milder form presents with hepatomegaly, splenomegaly and occasional lung and bone disease; this is managed, symptomatically, by enzyme replacement therapy. The acute childhood lethal form of nGD is untreatable since enzyme cannot cross the blood-brain barrier. Patients with nGD exhibit signs consistent with hindbrain neurodegeneration, including neck hyperextension, strabismus and, often, fatal apnea1. We selected a mouse model of nGD carrying a loxP-flanked neomycin disruption of Gba plus Cre recombinase regulated by the keratinocyte-specific K14 promoter. Exclusive skin expression of Gba prevents fatal neonatal dehydration. Instead, mice develop fatal neurodegeneration within 15 days2. Using this model, fetal intracranial injection of adeno-associated virus (AAV) vector reconstituted neuronal glucocerebrosidase expression. Mice lived for up to at least 18 weeks, were fertile and fully mobile. Neurodegeneration was abolished and neuroinflammation ameliorated. Neonatal intervention also rescued mice but less effectively. As the next step to clinical translation, we also demonstrated the feasibility of ultrasound-guided global AAV gene transfer to fetal macaque brains.


Subject(s)
Fetus/metabolism , Genetic Therapy , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/therapy , Animals , Gaucher Disease/genetics , Gaucher Disease/therapy , Humans , Infant , Injections, Intravenous , Injections, Intraventricular , Mice, Inbred C57BL
3.
Biotechnol Lett ; 39(12): 1865-1873, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28875244

ABSTRACT

OBJECTIVES: To reduce unwanted Fab' leakage from an autonucleolytic Escherichia coli strain, which co-expresses OmpA-signalled Staphylococcal nuclease and Fab' fragment in the periplasm, by substituting in Serratial nuclease and the DsbA periplasm translocation signal as alternatives. RESULTS: We attempted to genetically fuse a nuclease from Serratia marcescens to the OmpA signal peptide but plasmid construction failed, possibly due to toxicity of the resultant nuclease. Combining Serratial nuclease to the DsbA signal peptide was successful. The strain co-expressing this nuclease and periplasmic Fab' grew in complex media and exhibited nuclease activity detectable by DNAse agar plate but its growth in defined medium was retarded. Fab' coexpression with Staphylococcal nuclease fused to the DsbA signal peptide resulted in cells exhibiting nuclease activity and growth in defined medium. In cultivation to high cell density in a 5 l bioreactor, DsbA-fused Staphylococcal nuclease co-expression coincided with reduced Fab' leakage relative to the original autonucleolytic Fab' strain with OmpA-fused staphylococcal nuclease. CONCLUSIONS: We successfully rescued Fab' leakage back to acceptable levels and established a basis for future investigation of the linkage between periplasmic nuclease expression and leakage of co-expressed periplasmic Fab' fragment to the surrounding growth media.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Immunoglobulin Fab Fragments/genetics , Protein Disulfide-Isomerases/genetics , Protein Sorting Signals/genetics , Recombinant Fusion Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bioreactors/microbiology , Cell Survival , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Escherichia coli/enzymology , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Immunoglobulin Fab Fragments/metabolism , Metabolic Engineering , Protein Disulfide-Isomerases/metabolism
4.
J Vis Exp ; (116)2016 10 20.
Article in English | MEDLINE | ID: mdl-27805616

ABSTRACT

Many neurodegenerative diseases are still lacking effective treatments. Reliable biomarkers for identifying and classifying these diseases will be important in the development of future novel therapies. Often potential new biomarkers do not make it into the clinic due to limitations in their development and high costs. However, targeted proteomics using Multiple Reaction Monitoring Liquid Chromatography-tandem/Mass Spectrometry (MRM LC-MS/MS), specifically using triple quadrupole mass spectrometers, is one method that can be used to rapidly evaluate and validate biomarkers for clinical translation into diagnostic laboratories. Traditionally, this platform has been used extensively for measurement of small molecules in clinical laboratories, but it is the potential to analyze proteins, that makes it an attractive alternative to ELISA (Enzyme-Linked Immunosorbent Assay)-based methods. We describe here how targeted proteomics can be used to measure multiplexed markers of dementia, including the detection and quantitation of the known risk factor apolipoprotein E isoform 4 (ApoE4). In order to make the assay suitable for translation, it is designed to be rapid, simple, highly specific and cost effective. To achieve this, every step in the development of the assay must be optimized for the individual proteins and tissues they are analyzed in. This method describes a typical workflow including various tips and tricks to developing a targeted proteomics MRM LC-MS/MS for translation. The method development is optimized using custom synthesized versions of tryptic quantotypic peptides, which calibrate the MS for detection and then spiked into CSF to determine correct identification of the endogenous peptide in the chromatographic separation prior to analysis in the MS. To achieve absolute quantitation, stable isotope-labeled internal standard versions of the peptides with short amino acid sequence tags and containing a trypsin cleavage site, are included in the assay.


Subject(s)
Apolipoproteins E , Biomarkers , Neurodegenerative Diseases/diagnosis , Protein Isoforms , Chromatography, Liquid , Humans , Proteomics , Tandem Mass Spectrometry
5.
J Neurosci ; 36(46): 11654-11670, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27852774

ABSTRACT

Glucocerebrosidase (GBA1) mutations are associated with Gaucher disease (GD), an autosomal recessive disorder caused by functional deficiency of glucocerebrosidase (GBA), a lysosomal enzyme that hydrolyzes glucosylceramide to ceramide and glucose. Neuronopathic forms of GD can be associated with rapid neurological decline (Type II) or manifest as a chronic form (Type III) with a wide spectrum of neurological signs. Furthermore, there is now a well-established link between GBA1 mutations and Parkinson's disease (PD), with heterozygote mutations in GBA1 considered the commonest genetic defect in PD. Here we describe a novel Drosophila model of GD that lacks the two fly GBA1 orthologs. This knock-out model recapitulates the main features of GD at the cellular level with severe lysosomal defects and accumulation of glucosylceramide in the fly brain. We also demonstrate a block in autophagy flux in association with reduced lifespan, age-dependent locomotor deficits and accumulation of autophagy substrates in dGBA-deficient fly brains. Furthermore, mechanistic target of rapamycin (mTOR) signaling is downregulated in dGBA knock-out flies, with a concomitant upregulation of Mitf gene expression, the fly ortholog of mammalian TFEB, likely as a compensatory response to the autophagy block. Moreover, the mTOR inhibitor rapamycin is able to partially ameliorate the lifespan, locomotor, and oxidative stress phenotypes. Together, our results demonstrate that this dGBA1-deficient fly model is a useful platform for the further study of the role of lysosomal-autophagic impairment and the potential therapeutic benefits of rapamycin in neuronopathic GD. These results also have important implications for the role of autophagy and mTOR signaling in GBA1-associated PD SIGNIFICANCE STATEMENT: We developed a Drosophila model of neuronopathic GD by knocking-out the fly orthologs of the GBA1 gene, demonstrating abnormal lysosomal pathology in the fly brain. Functioning lysosomes are required for autophagosome-lysosomal fusion in the autophagy pathway. We show in vivo that autophagy is impaired in dGBA-deficient fly brains. In response, mechanistic target of rapamycin (mTOR) activity is downregulated in dGBA-deficient flies and rapamycin ameliorates the lifespan, locomotor, and oxidative stress phenotypes. dGBA knock-out flies also display an upregulation of the Drosophila ortholog of mammalian TFEB, Mitf, a response that is unable to overcome the autophagy block. Together, our results suggest that rapamycin may have potential benefits in the treatment of GD, as well as PD linked to GBA1 mutations.


Subject(s)
Disease Models, Animal , Gaucher Disease/metabolism , Gaucher Disease/prevention & control , Glucosylceramidase/genetics , Lysosomes/metabolism , Sirolimus/administration & dosage , TOR Serine-Threonine Kinases/metabolism , Animals , Animals, Genetically Modified , Autophagy/drug effects , Drosophila , Gaucher Disease/pathology , Gene Knockout Techniques , Signal Transduction/drug effects
7.
Mol Neurodegener ; 10: 64, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26627638

ABSTRACT

BACKGROUND: Currently there are no effective treatments for many neurodegenerative diseases. Reliable biomarkers for identifying and stratifying these diseases will be important in the development of future novel therapies. Lewy Body Dementia (LBD) is considered an under diagnosed form of dementia for which markers are needed to discriminate LBD from other forms of dementia such as Alzheimer's Disease (AD). This work describes a Label-Free proteomic profiling analysis of cerebral spinal fluid (CSF) from non-neurodegenerative controls and patients with LBD. Using this technology we identified several potential novel markers for LBD. These were then combined with other biomarkers from previously published studies, to create a 10 min multiplexed targeted and translational MRM-LC-MS/MS assay. This test was used to validate our new assay in a larger cohort of samples including controls and the other neurodegenerative conditions of Alzheimer's and Parkinson's disease (PD). RESULTS: Thirty eight proteins showed significantly (p < 0.05) altered expression in LBD CSF by proteomic profiling. The targeted MRM-LC-MS/MS assay revealed 4 proteins that were specific for the identification of AD from LBD: ectonucleotide pyrophosphatase/phosphodiesterase 2 (p < 0.0001), lysosome-associated membrane protein 1 (p < 0.0001), pro-orexin (p < 0.0017) and transthyretin (p < 0.0001). Nineteen proteins were elevated significantly in both AD and LBD versus the control group of which 4 proteins are novel (malate dehydrogenase 1, serum amyloid A4, GM2-activator protein, and prosaposin). Protein-DJ1 was only elevated significantly in the PD group and not in either LBD or AD samples. Correlations with Alzheimer-associated amyloid ß-42 levels, determined by ELISA, were observed for transthyretin, GM2 activator protein and IGF2 in the AD disease group (r(2) ≥ 0.39, p ≤ 0.012). Cystatin C, ubiquitin and osteopontin showed a strong significant linear relationship (r(2) ≥ 0.4, p ≤ 0.03) with phosphorylated-tau levels in all groups, whilst malate dehydrogenase and apolipoprotein E demonstrated a linear relationship with phosphorylated-tau and total-tau levels in only AD and LBD disease groups. CONCLUSIONS: Using proteomics we have identified several potential and novel markers of neurodegeneration and subsequently validated them using a rapid, multiplexed mass spectral test. This targeted proteomic platform can measure common markers of neurodegeneration that correlate with existing diagnostic makers as well as some that have potential to show changes between AD from LBD.


Subject(s)
Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , High-Throughput Screening Assays , Neurodegenerative Diseases/diagnosis , tau Proteins/cerebrospinal fluid , Aged , Amyloid beta-Peptides/metabolism , High-Throughput Screening Assays/methods , Humans , Middle Aged , Proteomics/methods , Tandem Mass Spectrometry/methods , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...