Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(13): e2213690120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36961925

ABSTRACT

Selection and development of monoclonal antibody (mAb) therapeutics against pathogenic viruses depends on certain functional characteristics. Neutralization potency, or the half-maximal inhibitory concentration (IC50) values, is an important characteristic of candidate therapeutic antibodies. Structural insights into the bases of neutralization potency differences between antiviral neutralizing mAbs are lacking. In this report, we present cryo-electron microscopy (EM) reconstructions of three anti-Eastern equine encephalitis virus (EEEV) neutralizing human mAbs targeting overlapping epitopes on the E2 protein, with greater than 20-fold differences in their respective IC50 values. From our structural and biophysical analyses, we identify several constraints that contribute to the observed differences in the neutralization potencies. Cryo-EM reconstructions of EEEV in complex with these Fab fragments reveal structural constraints that dictate intravirion or intervirion cross-linking of glycoprotein spikes by their IgG counterparts as a mechanism of neutralization. Additionally, we describe critical features for the recognition of EEEV by these mAbs including the epitope-paratope interaction surface, occupancy, and kinetic differences in on-rate for binding to the E2 protein. Each constraint contributes to the extent of EEEV inhibition for blockade of virus entry, fusion, and/or egress. These findings provide structural and biophysical insights into the differences in mechanism and neutralization potencies of these antibodies, which help inform rational design principles for candidate vaccines and therapeutic antibodies for all icosahedral viruses.


Subject(s)
Encephalitis Virus, Eastern Equine , Encephalomyelitis, Equine , Humans , Horses , Animals , Antibodies, Neutralizing , Antibodies, Viral , Cryoelectron Microscopy , Epitopes , Antibodies, Monoclonal , Neutralization Tests
2.
Proc Natl Acad Sci U S A ; 120(3): e2218899120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36638211

ABSTRACT

Cleavage of the flavivirus premembrane (prM) structural protein during maturation can be inefficient. The contribution of partially mature flavivirus virions that retain uncleaved prM to pathogenesis during primary infection is unknown. To investigate this question, we characterized the functional properties of newly-generated dengue virus (DENV) prM-reactive monoclonal antibodies (mAbs) in vitro and using a mouse model of DENV disease. Anti-prM mAbs neutralized DENV infection in a virion maturation state-dependent manner. Alanine scanning mutagenesis and cryoelectron microscopy of anti-prM mAbs in complex with immature DENV defined two modes of attachment to a single antigenic site. In vivo, passive transfer of intact anti-prM mAbs resulted in an antibody-dependent enhancement of disease. However, protection against DENV-induced lethality was observed when the transferred mAbs were genetically modified to inhibit their ability to interact with Fcγ receptors. These data establish that in addition to mature forms of the virus, partially mature infectious prM+ virions can also contribute to pathogenesis during primary DENV infections.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Dengue Virus , Dengue , Cryoelectron Microscopy , Viral Envelope Proteins/metabolism , Virion/metabolism , Animals , Mice
3.
Molecules ; 26(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34641337

ABSTRACT

We report the design and synthesis of a series of new 5-chloropyridinyl esters of salicylic acid, ibuprofen, indomethacin, and related aromatic carboxylic acids for evaluation against SARS-CoV-2 3CL protease enzyme. These ester derivatives were synthesized using EDC in the presence of DMAP to provide various esters in good to excellent yields. Compounds are stable and purified by silica gel chromatography and characterized using 1H-NMR, 13C-NMR, and mass spectral analysis. These synthetic derivatives were evaluated in our in vitro SARS-CoV-2 3CLpro inhibition assay using authentic SARS-CoV-2 3CLpro enzyme. Compounds were also evaluated in our in vitro antiviral assay using quantitative VeroE6 cell-based assay with RNAqPCR. A number of compounds exhibited potent SARS-CoV-2 3CLpro inhibitory activity and antiviral activity. Compound 9a was the most potent inhibitor, with an enzyme IC50 value of 160 nM. Compound 13b exhibited an enzyme IC50 value of 4.9 µM. However, it exhibited a potent antiviral EC50 value of 24 µM in VeroE6 cells. Remdesivir, an RdRp inhibitor, exhibited an antiviral EC50 value of 2.4 µM in the same assay. We assessed the mode of inhibition using mass spectral analysis which suggested the formation of a covalent bond with the enzyme. To obtain molecular insight, we have created a model of compound 9a bound to SARS-CoV-2 3CLpro in the active site.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Chlorocebus aethiops , Coronavirus 3C Proteases/metabolism , Esters/chemistry , Esters/pharmacology , Halogenation , Humans , Ibuprofen/analogs & derivatives , Ibuprofen/pharmacology , Indomethacin/analogs & derivatives , Indomethacin/pharmacology , Molecular Docking Simulation , Pyridines/chemistry , Pyridines/pharmacology , SARS-CoV-2/metabolism , Salicylic Acid/chemistry , Salicylic Acid/pharmacology , Vero Cells
4.
Nat Commun ; 11(1): 3896, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32753727

ABSTRACT

The outbreak of Zika virus (ZIKV) in 2016 created worldwide health emergency which demand urgent research efforts on understanding the virus biology and developing therapeutic strategies. Here, we present a time-resolved chemical proteomic strategy to track the early-stage entry of ZIKV into host cells. ZIKV was labeled on its surface with a chemical probe, which carries a photocrosslinker to covalently link virus-interacting proteins in living cells on UV exposure at different time points, and a biotin tag for subsequent enrichment and mass spectrometric identification of the receptor or other host proteins critical for virus internalization. We identified Neural Cell Adhesion Molecule (NCAM1) as a potential ZIKV receptor and further validated it through overexpression, knockout, and inhibition of NCAM1 in Vero cells and human glioblastoma cells U-251 MG. Collectively, the strategy can serve as a universal tool to map virus entry pathways and uncover key interacting proteins.


Subject(s)
Neural Cell Adhesion Molecules/metabolism , Proteomics , Receptors, Virus/metabolism , Virus Internalization , Virus Replication/physiology , Zika Virus/physiology , Animals , CD56 Antigen/genetics , CD56 Antigen/metabolism , Cell Line, Tumor , Chlorocebus aethiops , Gene Knockout Techniques , Glioblastoma , HEK293 Cells , Host-Pathogen Interactions/physiology , Humans , Neural Cell Adhesion Molecules/genetics , Vero Cells , Viral Proteins/metabolism , Virus Attachment , Zika Virus Infection/virology
5.
Vaccine ; 37(27): 3580-3587, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31122859

ABSTRACT

Dengue virus (DENV) infection is a global health threat with the potential to affect at least 3.6 billion people living in areas of risk. No specific curative treatments against dengue disease are available and vaccines are currently the only way to prevent the disease. The tetravalent dengue vaccine developed by Sanofi Pasteur has demonstrated significant efficacy in phase III studies and is now licensed in several countries for the prevention of disease in dengue-seropositives over 9 years of age. The vaccine is composed of four recombinant, live, attenuated vaccines (CYD 1-4) based on a yellow fever vaccine 17D (YFV 17D) backbone, each expressing the pre-membrane (prM) and envelope (E) genes of one of the four DENV serotypes. Virus maturity could impact the biological activity of the vaccine viruses. To address this question, the maturity of the four vaccine viruses used in phase III clinical studies was assessed by two complementary techniques: mass spectrometry (MS) and cryo-electron microscopy (cryoEM). MS assessed viral maturity at the molecular level by quantifying specifically the prM, and M proteins. CryoEM provided information at the particle level, allowing visualizing the different phenotypes of viral particles: spiky (immature), smooth/bumpy (mature), and mixed (partially mature). Results of the two assays used in this study show that all four CYD dengue vaccine viruses present in lots used in phase III efficacy trials, display in the majority a mature phenotype.


Subject(s)
Cryoelectron Microscopy/methods , Dengue Vaccines , Dengue Virus/growth & development , Mass Spectrometry/methods , Technology, Pharmaceutical/methods , Dengue Virus/chemistry , Dengue Virus/ultrastructure , Humans , Vaccines, Attenuated , Vaccines, Synthetic
6.
Cell Rep ; 23(3): 692-700, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-29669275

ABSTRACT

Zika virus (ZIKV) is associated with severe neurodevelopmental impairments in human fetuses, including microencephaly. Previous reports examining neural progenitor tropism of ZIKV in organoid and animal models did not address whether the virus infects all neural progenitors uniformly. To explore this, ZIKV was injected into the neural tube of 2-day-old chicken embryos, resulting in nonuniform periventricular infection 3 days later. Recurrent foci of intense infection were present at specific signaling centers that influence neuroepithelial patterning at a distance through secretion of morphogens. ZIKV infection reduced transcript levels for 3 morphogens, SHH, BMP7, and FGF8 expressed at the midbrain basal plate, hypothalamic floor plate, and isthmus, respectively. Levels of Patched1, a SHH-pathway downstream gene, were also reduced, and a SHH-dependent cell population in the ventral midbrain was shifted in position. Thus, the diminishment of signaling centers through ZIKV-mediated apoptosis may yield broader, non-cell-autonomous changes in brain patterning.


Subject(s)
Brain/metabolism , Zika Virus/physiology , Animals , Apoptosis , Bone Morphogenetic Protein 7/metabolism , Brain/pathology , Brain/virology , Cell Proliferation , Chick Embryo , Chickens , Fibroblast Growth Factor 8/metabolism , Hedgehog Proteins/metabolism , Patched-1 Receptor/metabolism , Signal Transduction , Zika Virus Infection/pathology , Zika Virus Infection/veterinary
7.
J Infect Dis ; 216(suppl_10): S935-S944, 2017 12 16.
Article in English | MEDLINE | ID: mdl-29267925

ABSTRACT

The emergence of Zika virus (ZIKV) as a major public health threat has focused research on understanding virus biology and developing a suite of strategies for disease intervention. Recent advances in cryoelectron microscopy have accelerated structure-function studies of flaviviruses and of ZIKV in particular. Structures of the mature and immature ZIKV have demonstrated its similarity with other known flaviviruses such as dengue and West Nile viruses. However, ZIKV's unique pathobiology demands an explanation of how its structure, although similar to its flavivirus relatives, is sufficiently unique to address questions of receptor specificity, transmission, and antigenicity. Progress in defining the immunodominant epitopes and how neutralizing antibodies bind to them will provide great insight as vaccines progress through clinical trials. Identification of host receptors will substantially illuminate the interesting ZIKV tropism and provide insights into pathogenesis. Although the answers to all of these questions are not yet available, rapid progress in combining structural biology with other techniques is revealing the similarities and the differences in virion structure and function between ZIKV and related flaviviruses.


Subject(s)
Antibodies, Viral/immunology , Cryoelectron Microscopy , Flavivirus/ultrastructure , Zika Virus Infection/virology , Zika Virus/ultrastructure , Antibodies, Neutralizing , Epitopes/immunology , Flavivirus/genetics , Flavivirus/immunology , Humans , Immunogenicity, Vaccine , Virion , Zika Virus/genetics , Zika Virus/immunology , Zika Virus/pathogenicity , Zika Virus Infection/immunology , Zika Virus Infection/prevention & control , Zika Virus Infection/transmission
8.
mBio ; 8(3)2017 06 27.
Article in English | MEDLINE | ID: mdl-28655823

ABSTRACT

Zika virus caught the world by surprise by its rapid spread and frightening disease outcomes. This major epidemic motivated many scientists to focus their attention on controlling this emerging pathogen. As many as 45 vaccine candidates are being developed, but progress in the antiviral arena has been slower. In a recent article (mBio 8:e00350-17, 2017, https://doi.org/10.1128/mBio.00350-17), Costa and colleagues showed that an FDA-approved drug used to treat Alzheimer's disease may moderate Zika virus-induced neuronal damage. This work is based on the premise that overstimulation of N-methyl-d-aspartate receptors (NMDARs) may drive neurodegeneration and that this may be responsible for neuronal cell death associated with Zika virus infection of the central nervous system (CNS). Thus, blockage of the NMDAR channel activity with FDA-approved memantine or other antagonists may reduce neurological complications associated with Zika virus infection. Repurposing a preapproved drug and targeting the host represent intriguing strategies and yet require more analysis prior to moving into clinical trials.


Subject(s)
Alzheimer Disease , Zika Virus Infection , Zika Virus , Cell Death , Humans , N-Methylaspartate
9.
Nat Struct Mol Biol ; 24(2): 184-186, 2017 02.
Article in English | MEDLINE | ID: mdl-28067914

ABSTRACT

The current Zika virus (ZIKV) epidemic is characterized by severe pathogenicity in both children and adults. Sequence changes in ZIKV since its first isolation are apparent when pre-epidemic strains are compared with those causing the current epidemic. However, the residues that are responsible for ZIKV pathogenicity are largely unknown. Here we report the cryo-electron microscopy (cryo-EM) structure of the immature ZIKV at 9-Å resolution. The cryo-EM map was fitted with the crystal structures of the precursor membrane and envelope glycoproteins and was shown to be similar to the structures of other known immature flaviviruses. However, the immature ZIKV contains a partially ordered capsid protein shell that is less prominent in other immature flaviviruses. Furthermore, six amino acids near the interface between pr domains at the top of the spikes were found to be different between the pre-epidemic and epidemic ZIKV, possibly influencing the composition and structure of the resulting viruses.


Subject(s)
Capsid Proteins/ultrastructure , Zika Virus/ultrastructure , Aedes , Animals , Capsid Proteins/chemistry , Cell Line , Cryoelectron Microscopy , Glycosylation , Models, Molecular , Protein Processing, Post-Translational , Protein Structure, Quaternary , Virion/ultrastructure
10.
Virology ; 497: 33-40, 2016 10.
Article in English | MEDLINE | ID: mdl-27420797

ABSTRACT

Flaviviruses are positive-stranded RNA viruses that incorporate envelope (E) and premembrane (prM) proteins into the virion. Furin-mediated cleavage of prM defines a required maturation step in the flavivirus lifecycle. Inefficient prM cleavage results in structurally heterogeneous virions with unique antigenic and functional characteristics. Recent studies with dengue virus suggest that viruses produced in tissue culture cells are less mature than those produced in primary cells. In this study, we describe a Vero cell line that ectopically expresses high levels of human furin (Vero-furin) for use in the production of more homogenous mature flavivirus populations. Laboratory-adapted and clinical dengue virus isolates grow efficiently in Vero-furin cells. Biochemical and structural techniques demonstrate efficient prM cleavage in Vero-furin derived virus preparations. These virions also were less sensitive to neutralization by antibodies that bind efficiently to immature virions. This furin-expressing cell line will be of considerable utility for flavivirus neutralization and structural studies.


Subject(s)
Dengue Virus/physiology , Furin/genetics , Furin/metabolism , Gene Expression , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Cell Line , Chlorocebus aethiops , Dengue/genetics , Dengue/metabolism , Dengue/virology , Dengue Virus/ultrastructure , Humans , Neutralization Tests , Vero Cells , Virus Replication
11.
Science ; 352(6284): 467-70, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27033547

ABSTRACT

The recent rapid spread of Zika virus and its unexpected linkage to birth defects and an autoimmune neurological syndrome have generated worldwide concern. Zika virus is a flavivirus like the dengue, yellow fever, and West Nile viruses. We present the 3.8 angstrom resolution structure of mature Zika virus, determined by cryo-electron microscopy (cryo-EM). The structure of Zika virus is similar to other known flavivirus structures, except for the ~10 amino acids that surround the Asn(154) glycosylation site in each of the 180 envelope glycoproteins that make up the icosahedral shell. The carbohydrate moiety associated with this residue, which is recognizable in the cryo-EM electron density, may function as an attachment site of the virus to host cells. This region varies not only among Zika virus strains but also in other flaviviruses, which suggests that differences in this region may influence virus transmission and disease.


Subject(s)
Zika Virus/chemistry , Zika Virus/ultrastructure , Amino Acid Sequence , Cryoelectron Microscopy , Glycosylation , Humans , Molecular Sequence Data , Protein Structure, Tertiary , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/ultrastructure , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/ultrastructure
12.
PLoS One ; 10(5): e0126823, 2015.
Article in English | MEDLINE | ID: mdl-25992653

ABSTRACT

Dietary fat absorption by the small intestine is a multistep process that regulates the uptake and delivery of essential nutrients and energy. One step of this process is the temporary storage of dietary fat in cytoplasmic lipid droplets (CLDs). The storage and mobilization of dietary fat is thought to be regulated by proteins that associate with the CLD; however, mechanistic details of this process are currently unknown. In this study we analyzed the proteome of CLDs isolated from enterocytes harvested from the small intestine of mice following a dietary fat challenge. In this analysis we identified 181 proteins associated with the CLD fraction, of which 37 are associated with known lipid related metabolic pathways. We confirmed the localization of several of these proteins on or around the CLD through confocal and electron microscopy, including perilipin 3, apolipoprotein A-IV, and acyl-CoA synthetase long-chain family member 5. The identification of the enterocyte CLD proteome provides new insight into potential regulators of CLD metabolism and the process of dietary fat absorption.


Subject(s)
Dietary Fats/administration & dosage , Enterocytes/metabolism , Lipid Droplets/metabolism , Proteome/metabolism , Animals , Apolipoproteins A/metabolism , Carrier Proteins/metabolism , Coenzyme A Ligases/metabolism , Enterocytes/ultrastructure , Lipid Droplets/ultrastructure , Lipid Metabolism , Male , Metabolic Networks and Pathways , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Models, Biological , Perilipin-3 , Triglycerides/metabolism
13.
Curr Opin Virol ; 9: 134-42, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25462445

ABSTRACT

Flaviviruses affect hundreds of millions of people each year causing tremendous morbidity and mortality worldwide. This genus includes significant human pathogens such as dengue, West Nile, yellow fever, tick-borne encephalitis and Japanese encephalitis virus among many others. The disease caused by these viruses can range from febrile illness to hemorrhagic fever and encephalitis. A deeper understanding of the virus life cycle is required to foster development of antivirals and vaccines, which are an urgent need for many flaviviruses, especially dengue. The focus of this review is to summarize our current knowledge of flaviviral replication and assembly, the proteins and lipids involved therein, and how these processes are coordinated for efficient virus production.


Subject(s)
Flavivirus/physiology , Virus Assembly , Virus Replication , Host-Pathogen Interactions , Humans , Lipid Metabolism , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...