Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 480, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212306

ABSTRACT

Metamorphic fluids, faults, and shear zones are carriers of carbon from the deep Earth to shallower reservoirs. Some of these fluids are reduced and transport energy sources, like H2 and light hydrocarbons. Mechanisms and pathways capable of transporting these deep energy sources towards shallower reservoirs remain unidentified. Here we present geological evidence of failure of mechanically strong rocks due to the accumulation of CH4-H2-rich fluids at deep forearc depths, which ultimately reached supralithostatic pore fluid pressure. These fluids originated from adjacent reduction of carbonates by H2-rich fluids during serpentinization at eclogite-to-blueschist-facies conditions. Thermodynamic modeling predicts that the production and accumulation of CH4-H2-rich aqueous fluids can produce fluid overpressure more easily than carbon-poor and CO2-rich aqueous fluids. This study provides evidence for the migration of deep Earth energy sources along tectonic discontinuities, and suggests causal relationships with brittle failure of hard rock types that may trigger seismic activity at forearc depths.

2.
Contrib Mineral Petrol ; 178(11): 80, 2023.
Article in English | MEDLINE | ID: mdl-38616806

ABSTRACT

The volcanic rocks of the Chon Aike Silicic Large Igneous Province (CASP) are recognized as magmas dominantly produced by crustal anatexis. Investigating the zircon of the CASP provides an opportunity to gain further insight into geochemical and isotopic differences of the potential magmatic sources (i.e., crust versus mantle), to identify crustal reservoirs that contributed to the felsic magmas during anatexis, and to quantify the contributions of the respective sources. We present a combined zircon oxygen and hafnium isotope and trace element dataset for 16 volcanic units of the two youngest volcanic phases in Patagonia, dated here with LA-ICP-MS U-Pb geochronology at ca. 148-153 Ma (El Quemado Complex, EQC) and ca. 159 Ma (western Chon Aike Formation, WCA). The EQC zircon have 18O-enriched values (δ18O from 7 to 9.5‰) with correspondingly negative initial εHf values (- 2.0 to - 8.0). The WCA zircon have δ18O values between 6 and 7‰ and εHf values ranging between - 4.0 and + 1.5. Binary δ18O-εHf mixing models require an average of 70 and 60% melt derived from partial melting of isotopically distinct metasedimentary basements for the EQC and WCA, respectively. Zircon trace element compositions are consistent with anatexis of sedimentary protoliths derived from LIL-depleted upper continental crustal sources. The overlap between a high heat flux environment (i.e., widespread extension and lithospheric thinning) during supercontinental breakup and a fertile metasedimentary crust was key in producing voluminous felsic volcanism via anatexis following the injection and emplacement of basaltic magmas into the lower crust. Supplementary Information: The online version contains supplementary material available at 10.1007/s00410-023-02065-1.

3.
Geochim Cosmochim Acta ; 293: 103-126, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-35001941

ABSTRACT

26Al-26Mg ages were determined for 14 anorthite-bearing chondrules from five different unequilibrated ordinary chondrites (UOCs) with low petrologic subtypes (3.00-3.05). In addition, oxygen three isotopes of these chondrules were also measured. The selected chondrules are highly depleted in alkali elements, and anorthite is the only mesostasis phase, though they show a range of mafic mineral compositions (Mg# 76-97 mole%) that are representative of chondrules in UOCs. The mean ∆17O values in these chondrules range from -0.44 ± 0.23‰ to 0.49 ± 0.15‰, in good agreement with previous studies of plagioclase-bearing chondrules from UOCs. Anorthite in all chondrules exhibit resolvable excess 26Mg (> 1.0 ± 0.4‰). Their inferred (27Al/26Al)0 range from (6.3 ± 0.7)×10-6 to (8.9 ± 0.3)×10-6 corresponding to a timescale for chondrule formation of 1.8 ± 0.04 Ma to 2.16 ± 0.12/0.11 Ma after CAIs using a canonical (27Al/26Al)0 value of 5.25×10-5. The ages from six chondrules in LL chondrites are restricted to between 1.8 Ma and 1.9 Ma, whereas eight chondrules in L chondrites show ages from 1.8 Ma to 2.2 Ma, including three chondrules at ~2.0 Ma and two chondrules at ~2.15 Ma. The inferred chondrule formation ages from this study are at the peak of those previously determined for UOC chondrules, though with much shorter durations. This is potentially due to the time difference between formation of anorthite-bearing chondrules and typical UOC chondrules with alkali-rich compositions. Alternatively, younger chondrules ages in previous studies could have been the result of disturbance to the Al-Mg system in glassy mesostasis even at the low degree of thermal metamorphism in the parent bodies. Nevertheless, the high precision ages from this study (with uncertainties from 0.04 Ma to 0.15 Ma) indicate that there was potentially more than one chondrule forming event represented in the studied population. Considering data from LL chondrites only, the restricted duration (≤0.1 Ma) of chondrule formation ages suggests an origin in high density environments that subsequently lead to parent body formation. However, the unusually low alkali contents of the studied chondrules compared to common alkali-rich chondrules could also represent earlier chondrule formation events under relatively lower dust densities in the disk. Major chondrule forming events for UOCs might have postdated or concurrent with the younger anorthite-bearing chondrule formation at 2.15 Ma after CAIs, which are very close to the timing of accretion of ordinary chondrite parent bodies that are expected from thermal evolution of ordinary chondrite parent bodies.

4.
Nat Commun ; 10(1): 4734, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31628316

ABSTRACT

Pressure-temperature-time paths obtained from minerals in metamorphic rocks allow the reconstruction of the geodynamic evolution of mountain ranges under the assumption that rock pressure is lithostatic. This lithostatic pressure paradigm enables converting the metamorphic pressure directly into the rock's burial depth and, hence, quantifying the rock's burial and exhumation history. In the coherent Monte Rosa tectonic unit, Western Alps, considerably different metamorphic pressures are determined in adjacent rocks. Here we show with field and microstructural observations, phase petrology and geochemistry that these pressure differences cannot be explained by tectonic mixing, retrogression of high-pressure minerals, or lack of equilibration of mineral assemblages. We propose that the determined pressure difference of 0.8 ± 0.3 GPa is due to deviation from lithostatic pressure. We show with two analytical solutions for compression- and reaction-induced stress in mechanically heterogeneous rock that such pressure differences are mechanically feasible, supporting our interpretation of significant outcrop-scale pressure gradients.

SELECTION OF CITATIONS
SEARCH DETAIL
...