Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-35902240

ABSTRACT

Aedes mosquitoes are the vectors of several arboviruses that cause human disease. A better understanding of their reproduction helps to improve their management and contributes insights into the fundamental biology of mosquitoes. During mating, inseminated mosquito females receive seminal fluids and sperm from males that they then store in the spermathecae. In Aedes aegypti and Aedes albopictus, most mated females become resistant to further insemination within 2 h of initial insemination. Although the male seminal fluids are known to be involved in initiating the resistance of inseminated females to further insemination, the mechanism underlying this resistance is not well-understood. The determination of insemination status is a key step in investigating the behavioral and molecular interactions between males and females and for exploring the proximate influences and evolutionary implications of interspecific copulations. Several methods exist for determining insemination status, as discussed here. The choice of method depends on the research question and the availability of resources.

2.
Article in English | MEDLINE | ID: mdl-35902241

ABSTRACT

Within the genus Aedes, the reproductive biology of two species has been most thoroughly studied: Aedes aegypti and Aedes albopictus In these species, females tend to copulate with one or more males once sexually mature. Within a few hours after an initial insemination, most females become refractory to insemination for the rest of their lives. Aedes females store sperm in three sclerotized spherical structures called spermathecae, where they can remain viable for >3 mo after copulation. This protocol outlines a quick (∼3-5 min per female once you are practiced in dissection) and effective method for dissecting the female spermathecae from Ae. aegypti and Ae. albopictus mosquitoes and scoring them for the presence or absence of sperm in cases in which the researcher does not need the female for further studies.

3.
Proc Biol Sci ; 289(1977): 20212806, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35765836

ABSTRACT

Seminal fluid proteins (Sfps) modify female phenotypes and have wide-ranging evolutionary implications on fitness in many insects. However, in the Mexican fruit fly, Anastrepha ludens, a highly destructive agricultural pest, the functions of Sfps are still largely unknown. To gain insights into female phenotypes regulated by Sfps, we used nano-liquid chromatography mass spectrometry to conduct a proteomic analysis of the soluble proteins from reproductive organs of A. ludens. The proteins predicted to be transferred from males to females during copulation were 100 proteins from the accessory glands, 69 from the testes and 20 from the ejaculatory bulb, resulting in 141 unique proteins after accounting for redundancies from multiple tissues. These 141 included orthologues to Drosophila melanogaster proteins involved mainly in oogenesis, spermatogenesis, immune response, lifespan and fecundity. In particular, we found one protein associated with female olfactory response to repellent stimuli (Scribble), and two related to memory formation (aPKC and Shibire). Together, these results raise the possibility that A. ludens Sfps could play a role in regulating female olfactory responses and memory formation and could be indicative of novel evolutionary functions in this important agricultural pest.


Subject(s)
Drosophila Proteins , Tephritidae , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Female , Male , Proteomics/methods , Seminal Plasma Proteins/genetics , Seminal Plasma Proteins/metabolism , Tephritidae/metabolism
4.
Insects ; 13(1)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35055912

ABSTRACT

There is intense interest in controlling insect reproductive output. In many insect species, reproductive output is profoundly influenced by mating, including the receipt of sperm and seminal fluid molecules, through physiological and behavior changes. To understand these changes, many researchers have investigated post-mating gene expression regulation. In this review, we synthesize information from studies both across and within different species about the impact of mating, or components of mating, on female gene expression patterns. We found that genes related to the roles of metabolism, immune-response, and chemosensation are regulated by mating across many different insect species. We highlight the few studies that have taken the important next step of examining the functional consequences of gene expression regulation which is crucial in order to understand the mechanisms underlying the mating-regulated control of female lifespan and reproduction and to make use of such knowledge to propagate or control insect populations. The potential of cross-study comparisons is diminished by different studies using different methods. Thus, we also include a consideration of how future studies could be designed to facilitate cross-study comparisons and a call for collaboration across researchers studying different insect species and different aspects of insect biology.

5.
Front Physiol ; 12: 714247, 2021.
Article in English | MEDLINE | ID: mdl-34566680

ABSTRACT

Copulation and/or ejaculate components can alter female physiological state and female post-mating behavior. The objective of the present study was to determine if copulation and male reproductive accessory gland products (MAGs) modify the behavior of female Anastrepha ludens (Loew) and Anastrepha obliqua (Macquart; Diptera: Tephritidae) in response to two stimuli: male-emitted pheromone and oviposition host volatiles. Olfactometry studies revealed that mated females of both A. ludens and A. obliqua have a stronger response for host volatiles compared to unmated females, which have a stronger response for male pheromone. We also examined olfactory responses of females mated to testectomized males who could transfer MAGs but not sperm. In both species, MAGs alone did not cause the change in the olfactory response observed after copulation, unlike what has been found in Ceratitis capitata (Wiedemann). Females mated to testectomized males responded equally to the male sex pheromone or to host volatiles, thus suggesting that the whole ejaculate is needed to elicit the complete behavioral switch in olfactory response. The function of MAGs is still unknown in these two pests of economic importance. The response for host volatiles by mated females has implications for the development of baits and traps that should preferably attract and target this population.

6.
J Med Entomol ; 58(6): 2058-2066, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34224564

ABSTRACT

Mosquito-borne pathogens have spread throughout tropical regions of the Western Hemisphere causing increased burden of disease in the region. Outbreaks of dengue fever, yellow fever, chikungunya, West Nile, and Zika have occurred over the past several years. Mosquito blood-feeding patterns need to be assayed to assist in determining which vertebrates could act as hosts of these mosquito-borne pathogens and which mosquito species could act as vectors. We conducted bloodmeal analyses of mosquitoes collected at Lomas Barbudal Biological Reserve, a dry tropical forest reserve in Costa Rica. Mosquitoes were collected using backpack aspirators and light, gravid, and resting traps, and then identified morphologically. Blood-fed mosquitoes underwent DNA extraction, PCR amplification, and sequencing of the vertebrate cytochrome b and cytochrome c oxidase 1 genes to identify vertebrate bloodmeal hosts. Several mosquitoes known to vector pathogens were found including Culex (Melanoconion) erraticus Dyar & Knab (Diptera: Culicidae), Cx. (Mel.) pedroi Sirivanakarn & Belkin, Aedes (Stegomyia) albopictus Skuse, Ae. (Ochlerotatus) scapularis Rondani, Ae. (Och.) serratus Theobald, and Ae. (Och.) taeniorhynchus Wiedemann. The most common bloodmeal hosts were basilisk lizards (Basiliscus vittatus) Wiegmann (Squamata: Corytophanidae) in Culex (Linnaeus) species and white-tailed deer (Odocoileus virginianus) Zimmermann (Artiodactyla: Cervidae) in Aedes (Meigen) species. These results show the diversity of mosquito species in a tropical dry deciduous forest and identify associations between mosquito vectors and potential pathogen reservoir hosts. Our study highlights the importance of understanding interactions between vector species and their hosts that could serve as predictors for the potential emergence or resurgence of mosquito-borne pathogens in Costa Rica.


Subject(s)
Culicidae/physiology , Food Chain , Mosquito Vectors/physiology , Animals , Costa Rica , Feeding Behavior , Species Specificity
7.
Bioessays ; 42(11): e2000248, 2020 11.
Article in English | MEDLINE | ID: mdl-33017061

Subject(s)
Copulation , Drosophila , Animals , Female , Male
8.
Integr Comp Biol ; 60(3): 796-813, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32702091

ABSTRACT

Like many scientific disciplines, the field of reproductive biology is subject to biases in terminology and research foci. For example, females are often described as coy and passive players in reproductive behaviors and are termed "promiscuous" if they engage in extra-pair copulations. Males on the other hand are viewed as actively holding territories and fighting with other males. Males are termed "multiply mating" if they mate with multiple females. Similarly, textbooks often illustrate meiosis as it occurs in males but not females. This edition of Integrative and Comparative Biology (ICB) includes a series of papers that focus on reproduction from the female perspective. These papers represent a subset of the work presented in our symposium and complementary sessions on female reproductive biology. In this round table discussion, we use a question and answer format to leverage the diverse perspectives and voices involved with the symposium in an exploration of theoretical, cultural, pedagogical, and scientific issues related to the study of female biology. We hope this dialog will provide a stepping-stone toward moving reproductive science and teaching to a more inclusive and objective framework.


Subject(s)
Invertebrates/physiology , Reproduction , Sexual Behavior, Animal , Vertebrates/physiology , Animals , Female , Zoology
9.
Curr Opin Insect Sci ; 35: 109-116, 2019 10.
Article in English | MEDLINE | ID: mdl-31472462

ABSTRACT

In insects, seminal fluid molecules (SFMs) influence female post-mating phenotypes that affect reproductive success including egg development, sperm use, mating behavior, attractiveness, and lifespan. Yet, the magnitude of these effects can be quite variable, even within inbred strains. This variation is important because it could impact post-copulatory reproductive success of both males and females. One likely cause of this variation is modulation by males or females of the quantities or qualities (e.g. stability or activity state) of SFMs, or, in the case of females, of their sensitivity to SFMs. Here, I review opportunities for SFM modulation by males and females and propose that these processes could provide mechanisms by which information received before and during copulation influences post-copulatory reproductive success.


Subject(s)
Copulation , Insecta/physiology , Semen/chemistry , Animals , Female , Male , Reproduction/physiology , Sexual Behavior, Animal
10.
Gen Comp Endocrinol ; 278: 104-111, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30682344

ABSTRACT

In most cases, proteins affect the phenotype of the individual in which they are produced. However, in some cases, proteins have evolved in such a way that they are able to influence the phenotype of another individual of the same or of a different species ("influential proteins"). Examples of interspecific influential proteins include venom proteins and proteins produced by parasites that influence their hosts' physiology or behavior. Examples of intraspecific influential proteins include those produced by both mothers and fetuses that mitigate maternal resource allocation and proteins transferred to females in the seminal fluid during mating that change female physiology and behavior. Although there has been much interest in the functions and evolutionary dynamics of these influential proteins, less is known about the origin of these proteins. Where does the DNA that encodes the proteins that can impact another individual's phenotype come from and how do the proteins acquire their influential abilities? In this mini-review, I use insect seminal fluid proteins as a case study to consider the origin of intraspecific influential proteins. The existing data suggest that influential insect seminal fluid proteins arise both through co-option of existing genes (both single copy genes and gene duplicates) and de novo evolution. Other mechanisms for the origin of new insect seminal fluid proteins (e.g., retrotransoposition and horizontal gene transfer) are plausible but have not yet been demonstrated. Additional gaps in our understanding of the origin of insect seminal fluid proteins include an understanding of the cis-regulatory elements that designate expression in the male reproductive tract and of the evolutionary steps by which individual proteins come to depend on other seminal fluid proteins for their activity within the mated female.


Subject(s)
Evolution, Molecular , Insect Proteins/genetics , Semen/metabolism , Animals , Gene Expression Regulation , Insect Proteins/metabolism , Organ Specificity/genetics
11.
Funct Ecol ; 30(3): 410-419, 2016 03.
Article in English | MEDLINE | ID: mdl-27546947

ABSTRACT

Males of many species fine-tune their ejaculates in response to sperm competition risk. Resource availability and the number of competitors during development can also strongly influence sperm production. However, despite the key role of seminal proteins in mediating reproductive processes, it is unclear whether seminal protein investment is dependent on the developmental environment.We manipulated the developmental environment of Drosophila melanogaster by rearing flies at low and high density. As expected, this resulted in large and small (i.e. high and low condition) adult phenotypes, respectively.As predicted, large males produced more of two key seminal proteins, sex peptide (SP) and ovulin, and were more successful at obtaining matings with both virgin and previously mated females. However, there was only a weak and non-significant trend for large males to transfer more absolute quantities of SP at mating, and thus, small males ejaculated proportionally more of their stored accessory gland SP resources.Males transferred more receptivity-inhibiting SP to large females. Despite this, large females remated more quickly than small females and thus responded to their developmental environment over and above the quantity of SP they received.The results are consistent with two non-mutually exclusive hypotheses. First, flies might respond to condition-dependent reproductive opportunities, with (i) small males investing heavily in ejaculates when mating opportunities arise and large males strategically partitioning SP resources and (ii) small females remating at reduced rates because they have higher mating costs or need to replenish sperm less often.Second, flies may be primed by their larval environment to deal with similar adult population densities, with (i) males perceiving high density as signalling increased competition, leading small males to invest proportionally more SP resources at mating and (ii) females perceiving high density as signalling abundant potential mates, leading to a higher sexual receptivity threshold.Thus, by influencing the mating frequencies of both sexes, as well as the quantity of seminal proteins produced by males and received by females, the developmental environment is likely to have far-reaching and sex-specific consequences for sexual selection and sexual conflict.

12.
J Insect Physiol ; 72: 14-21, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25445663

ABSTRACT

Atrazine is a commonly utilized herbicide to control broadleaf weeds in the agricultural setting. It can, however, have negative effects on male reproductive performance in a variety of vertebrate species. Much less is known, however, about the effects of atrazine on invertebrates. In this study, we investigated the effects of several different concentrations of larval atrazine exposure on measures of reproductive performance in adult male Drosophila melanogaster. Atrazine exposure had significant effects on a male's mating ability and the number of eggs his partner laid when he was successful at mating. Exposed males also sired a smaller proportion of the offspring under competitive conditions when they were the first male to mate to a doubly mated female. Atrazine exposure had no measurable effect on a male's ability to prevent a mated female from mating to another male or on the proportion of offspring sired when the exposed males were the second male to mate. Exposure upregulated expression of one male reproductive gene, ovulin, but had no effect on expression of another, sex peptide. Exposed males produced and transferred more sex peptide protein to the female during mating but ovulin protein levels were not affected. In general, we observed non-monotonic responses such that the intermediate exposure levels showed the largest reduction in male reproductive performance. This study suggests that atrazine exposure affects male reproductive performance in insects and future studies should aim to understand the molecular mechanisms underlying the fitness effects of exposure.


Subject(s)
Atrazine/toxicity , Drosophila melanogaster/drug effects , Herbicides/toxicity , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Female , Gene Expression , Larva/drug effects , Larva/physiology , Male , Reproduction/drug effects , Semen/chemistry , Sexual Behavior, Animal
13.
Cold Spring Harb Perspect Biol ; 7(2): a017533, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25502515

ABSTRACT

Sexual reproduction requires coordinated contributions from both sexes to proceed efficiently. However, the reproductive strategies that the sexes adopt often have the potential to give rise to sexual conflict because they can result in divergent, sex-specific costs and benefits. These conflicts can occur at many levels, from molecular to behavioral. Here, we consider sexual conflict mediated through the actions of seminal fluid proteins. These proteins provide many excellent examples in which to trace the operation of sexual conflict from molecules through to behavior. Seminal fluid proteins are made by males and provided to females during mating. As agents that can modulate egg production at several steps, as well as reproductive behavior, sperm "management," and female feeding, activity, and longevity, the actions of seminal proteins are prime targets for sexual conflict. We review these actions in the context of sexual conflict. We discuss genomic signatures in seminal protein (and related) genes that are consistent with current or previous sexual conflict. Finally, we note promising areas for future study and highlight real-world practical situations that will benefit from understanding the nature of sexual conflicts mediated by seminal proteins.


Subject(s)
Conflict, Psychological , Semen/metabolism , Sexual Behavior, Animal , Animal Nutritional Physiological Phenomena , Animals , Evolution, Molecular , Female , Longevity , Male , Proteins/chemistry , Proteins/genetics , Proteins/physiology , Reproduction , Semen/enzymology , Sex Factors
14.
J Insect Physiol ; 70: 117-24, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25107876

ABSTRACT

Aedes aegypti males transfer sperm and seminal fluid proteins (Sfps), primarily produced by male accessory glands (AGs), to females during mating. When collectively injected or transplanted into females, AG tissues and/or seminal fluid homogenates have profound effects on Aedes female physiology and behavior. To identify targets and design new strategies for vector control, it is important to understand the biology of the AGs. Thus, we examined characteristics of AG secretion and development in A. aegypti, using the AG-specific seminal fluid protein, AAEL010824, as a marker. We showed that AAEL010824 is first detectable by 12h post-eclosion, and increases in amount over the first 3 days of adult life. We then showed that the amount of AAEL0010824 in the AG decreases after mating, with each successive mating depleting it further; by 5 successive matings with no time for recovery, its levels are very low. AAEL010824 levels in a depleted male are replenished by 48 h post-mating. In addition to examining the level of AAEL010824 protein, we also characterized the expression of its gene. We did this by making a transgenic mosquito line that carries an Enhanced Green Fluorescence Protein (EGFP) fused to the AAEL0010824 promoter that we defined here. We showed that AAEL010824 is expressed in the anterior cells of the accessory glands, and that its RNA levels also respond to mating. In addition to further characterizing AAEL010824 expression, our results with the EGFP fusion provide a promoter for driving AG expression. By providing this information on the biology of an important male reproductive tissue and the production of one of its seminal proteins, our results lay the foundation for future work aimed at identifying novel targets for mosquito population control.


Subject(s)
Aedes/physiology , Dengue Virus/physiology , Insect Proteins/biosynthesis , Insect Vectors/physiology , Aedes/metabolism , Aedes/virology , Animals , Blotting, Western , Copulation/physiology , Female , Genitalia, Male/metabolism , Genitalia, Male/physiology , Insect Proteins/physiology , Insect Vectors/metabolism , Insect Vectors/virology , Male , Polymerase Chain Reaction
15.
PLoS Negl Trop Dis ; 8(6): e2946, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24945155

ABSTRACT

The Asian tiger mosquito (Aedes albopictus) is an important vector for pathogens that affect human health, including the viruses that cause dengue and Chikungunya fevers. It is also one of the world's fastest-spreading invasive species. For these reasons, it is crucial to identify strategies for controlling the reproduction and spread of this mosquito. During mating, seminal fluid proteins (Sfps) are transferred from male mosquitoes to females, and these Sfps modulate female behavior and physiology in ways that influence reproduction. Despite the importance of Sfps on female reproductive behavior in mosquitoes and other insects, the identity of Sfps in Ae. albopictus has not previously been reported. We used transcriptomics and proteomics to identify 198 Sfps in Ae. albopictus. We discuss possible functions of these Sfps in relation to Ae. albopictus reproduction-related biology. We additionally compare the sequences of these Sfps with proteins (including reported Sfps) in several other species, including Ae. aegypti. While only 72 (36.4%) of Ae. albopictus Sfps have putative orthologs in Ae. aegypti, suggesting low conservation of the complement of Sfps in these species, we find no evidence for an elevated rate of evolution or positive selection in the Sfps that are shared between the two Aedes species, suggesting high sequence conservation of those shared Sfps. Our results provide a foundation for future studies to investigate the roles of individual Sfps on feeding and reproduction in this mosquito. Functional analysis of these Sfps could inform strategies for managing the rate of pathogen transmission by Ae. albopictus.


Subject(s)
Aedes/chemistry , Insect Proteins/chemistry , Seminal Plasma Proteins/chemistry , Aedes/classification , Amino Acid Sequence , Animals , Chromatography, Liquid , Databases, Protein , Evolution, Molecular , Expressed Sequence Tags , Female , Gene Expression Profiling , Isotope Labeling , Male , Molecular Sequence Data , Proteomics , Tandem Mass Spectrometry , Transcriptome
16.
Mol Biol Evol ; 31(6): 1554-67, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24682282

ABSTRACT

Gene duplication is an important mechanism for the evolution of new reproductive proteins. However, in most cases, each resulting paralog continues to function within the same sex. To investigate the possibility that seminal fluid proteins arise through duplicates of female reproductive genes that become "co-opted" by males, we screened female reproductive genes in Drosophila melanogaster for cases of duplication in which one of the resulting paralogs produces a protein in males that is transferred to females during mating. We identified a set of three tandemly duplicated genes that encode secreted serine-type endopeptidase homologs, two of which are expressed primarily in the female reproductive tract (RT), whereas the third is expressed specifically in the male RT and encodes a seminal fluid protein. Evolutionary and gene expression analyses across Drosophila species suggest that this family arose from a single-copy gene that was female-specific; after duplication, one paralog evolved male-specific expression. Functional tests of knockdowns of each gene in D. melanogaster show that one female-expressed gene is essential for full fecundity, and both female-expressed genes contribute singly or in combination to a female's propensity to remate. In contrast, knockdown of the male-expressed paralog had no significant effect on female fecundity or remating. These data are consistent with a model in which members of this gene family exert effects on females by acting on a common, female-expressed target. After duplication and male co-option of one paralog, the evolution of the interacting proteins could have resulted in differential strengths or effects of each paralog.


Subject(s)
Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Gene Duplication , Genes, Insect , Animals , Evolution, Molecular , Female , Fertility/genetics , Gene Expression , Male , Models, Genetic , Multigene Family , Phylogeny , Reproduction/genetics , Sex Characteristics
17.
Trends Ecol Evol ; 28(7): 414-22, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23582755

ABSTRACT

Ejaculates are fundamental to fitness in sexually reproducing animals: males gain all their direct fitness via the ejaculate and females require ejaculates to reproduce. Both sperm and non-sperm components of the ejaculate (including parasperm, seminal proteins, water, and macromolecules) play vital roles in postcopulatory sexual selection and conflict, processes that can potentially drive rapid evolutionary change and reproductive isolation. Here, we assess the increasing evidence that considering ejaculate composition as a whole (and potential trade-offs among ejaculate components) has important consequences for predictions about male reproductive investment and female responses to ejaculates. We review current theory and empirical work, and detail how social and environmental effects on ejaculate composition have potentially far-reaching fitness consequences for both sexes.


Subject(s)
Biological Evolution , Ejaculation , Reproduction , Sexual Behavior, Animal , Spermatozoa/physiology , Animals , Female , Humans , Insecta/physiology , Male , Models, Biological , Sexual Behavior
18.
J Insect Physiol ; 58(10): 1307-13, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22796224

ABSTRACT

Male mosquitoes transfer seminal fluid proteins (hereafter 'SFPs') during mating. These proteins can have profound effects on female behavior in the yellow fever mosquito Aedes aegypti and the Asian tiger mosquito Aedes albopictus. SFPs are thought to be responsible for female refractoriness to mating in both species. However, only limited information is available about the duration of induced refractoriness or the quantity of SFPs required to be effective in Ae. albopictus. Here, we tested the duration of the effect of SFPs on female refractory behavior for both Aedes species. Additionally, we determined the lowest SFP dose required to induce female refractory behavior in Ae. aegypti. Virgin females were injected intra-thoracically with doses ranging from 0.25 to 0.008 equivalents of one male's SFP amount. Our results demonstrate high sensitivity of female Ae. aegypti and Ae. albopictus to SFPs of their own species, with the majority of females becoming refractory at doses ≥ 0.031 male-equivalents after injection into the hemocoel. This effect was long-lasting in both species; none of the injected females were inseminated when presented with males of their own species 30 to 34 days post-injection, whereas most saline-injected control females mated at this time point. These results will aid future work to characterize individual SFPs involved in post-mating refractoriness in these two species. Moreover, they show that as is the situation in the mosquito Anopheles gambiae, and unlike Drosophila melanogaster, sperm are not required for the maintenance of a sexual refractoriness response in Ae. aegypti and Ae. albopictus.


Subject(s)
Aedes/physiology , Insect Proteins/physiology , Seminal Plasma Proteins/physiology , Sexual Behavior, Animal , Animals , Female , Male
19.
Proc Natl Acad Sci U S A ; 108(24): 9922-6, 2011 Jun 14.
Article in English | MEDLINE | ID: mdl-21628597

ABSTRACT

Female promiscuity can generate postcopulatory competition among males, but it also provides the opportunity for exploitation of rival male ejaculates. For example, in many insect species, male seminal fluid proteins (Sfps) transferred in a female's first mating stimulate increased fecundity and decreased receptivity to remating. Subsequent mates of females could potentially take advantage of the effects of the first male's Sfps and strategically reduce investment in their own ejaculate. We compared postmating responses (fecundity and sexual receptivity) of Drosophila melanogaster females after their first (virgin) matings (V), to the responses of females remating (M) 24 h after their first mating. The results show that M matings fail to boost fecundity and, thus, males are unlikely to gain fitness from transferring Sfps whose sole function-in V matings-is fecundity-stimulation. However, males can protect their likelihood of paternity in M matings through the transfer of receptivity-inhibiting Sfps. The levels of a fecundity-stimulating Sfp (ovulin) were significantly lower in M females relative to V females, at the same time point shortly after the end of mating. In contrast, the levels of a key receptivity-inhibiting Sfp (sex peptide) were the same in M and V females. These results support the hypothesis that males can adaptively tailor the composition of proteins in the ejaculate, allowing a male to take advantage of the fecundity-stimulating effects of the previous male's ovulin, yet maintaining investment in sex peptide. Furthermore, our results demonstrate sophisticated protein-specific ejaculate manipulation.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Peptides/metabolism , Semen/metabolism , Sexual Behavior, Animal , Animals , Blotting, Western , Ejaculation , Female , Fertility , Intercellular Signaling Peptides and Proteins , Male , Mating Preference, Animal , Seminal Plasma Proteins/metabolism , Time Factors
20.
PLoS Negl Trop Dis ; 5(3): e989, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21423647

ABSTRACT

BACKGROUND: No commercially licensed vaccine or treatment is available for dengue fever, a potentially lethal infection that impacts millions of lives annually. New tools that target mosquito control may reduce vector populations and break the cycle of dengue transmission. Male mosquito seminal fluid proteins (Sfps) are one such target since these proteins, in aggregate, modulate the reproduction and feeding patterns of the dengue vector, Aedes aegypti. As an initial step in identifying new targets for dengue vector control, we sought to identify the suite of proteins that comprise the Ae. aegypti ejaculate and determine which are transferred to females during mating. METHODOLOGY AND PRINCIPAL FINDINGS: Using a stable-isotope labeling method coupled with proteomics to distinguish male- and female-derived proteins, we identified Sfps and sperm proteins transferred from males to females. Sfps were distinguished from sperm proteins by comparing the transferred proteins to sperm-enriched samples derived from testes and seminal vesicles. We identified 93 male-derived Sfps and 52 predicted sperm proteins that are transferred to females during mating. The Sfp protein classes we detected suggest roles in protein activation/inactivation, sperm utilization, and ecdysteroidogenesis. We also discovered that several predicted membrane-bound and intracellular proteins are transferred to females in the seminal fluids, supporting the hypothesis that Ae. aegypti Sfps are released from the accessory gland cells through apocrine secretion, as occurs in mammals. Many of the Ae. aegypti predicted sperm proteins were homologous to Drosophila melanogaster sperm proteins, suggesting conservation of their sperm-related function across Diptera. CONCLUSION AND SIGNIFICANCE: This is the first study to directly identify Sfps transferred from male Ae. aegypti to females. Our data lay the groundwork for future functional analyses to identify individual seminal proteins that may trigger female post-mating changes (e.g., in feeding patterns and egg production). Therefore, identification of these proteins may lead to new approaches for manipulating the reproductive output and vectorial capacity of Ae. aegypti.


Subject(s)
Aedes/chemistry , Insect Proteins/analysis , Proteome/analysis , Animals , Female , Insect Vectors/chemistry , Male , Semen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...