Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Org Process Res Dev ; 25(12): 2806-2815, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-35095257

ABSTRACT

Herein is described the development of a large-scale manufacturing process for molnupiravir, an orally dosed antiviral that was recently demonstrated to be efficacious for the treatment of patients with COVID-19. The yield, robustness, and efficiency of each of the five steps were improved, ultimately culminating in a 1.6-fold improvement in overall yield and a dramatic increase in the overall throughput compared to the baseline process.

2.
J Struct Biol ; 200(3): 283-292, 2017 12.
Article in English | MEDLINE | ID: mdl-28734842

ABSTRACT

Hydration forces between DNA molecules in the A- and B-Form were studied using a newly developed technique enabling simultaneous in situ control of temperature and relative humidity. X-ray diffraction data were collected from oriented calf-thymus DNA fibers in the relative humidity range of 98%-70%, during which DNA undergoes the B- to A-form transition. Coexistence of both forms was observed over a finite humidity range at the transition. The change in DNA separation in response to variation in humidity, i.e. change of chemical potential, led to the derivation of a force-distance curve with a characteristic exponential decay constant of∼2Å for both A- and B-DNA. While previous osmotic stress measurements had yielded similar force-decay constants, they were limited to B-DNA with a surface separation (wall-to-wall distance) typically>5Å. The current investigation confirms that the hydration force remains dominant even in the dry A-DNA state and at surface separation down to∼1.5Å, within the first hydration shell. It is shown that the observed chemical potential difference between the A and B states could be attributed to the water layer inside the major and minor grooves of the A-DNA double helices, which can partially interpenetrate each other in the tightly packed A phase. The humidity-controlled X-ray diffraction method described here can be employed to perform direct force measurements on a broad range of biological structures such as membranes and filamentous protein networks.


Subject(s)
DNA, A-Form/chemistry , DNA, B-Form/chemistry , X-Ray Diffraction/instrumentation , X-Ray Diffraction/methods , Calibration , DNA/chemistry , DNA, A-Form/metabolism , DNA, B-Form/metabolism , Environment, Controlled , Equipment Design , Humidity , Temperature
3.
Langmuir ; 22(6): 2474-81, 2006 Mar 14.
Article in English | MEDLINE | ID: mdl-16519443

ABSTRACT

Equimolar mixtures of dodecyltrimethylammonium chloride (DTAC) and sodium octyl sulfonate (SOSo) show a vesicle phase at >99 wt % water and a single, fluid lamellar phase for water fractions below 80 wt %. This combination is consistent with the bilayer bending elasticity kappa approximately k(B)T and zero bilayer spontaneous curvature. Caillé line shape analysis of the small-angle X-ray scattering from the lamellar phase shows that the effective kappa depends on the lamellar d spacing consistent with a logarithmic renormalization of kappa, with kappa(o) = (0.8 +/- 0.1)k(B)T. The vesicle size distribution determined by cryogenic transmission electron microscopy is well fit by models with zero spontaneous curvature to give (kappa + (kappa/2)) = (1.7 +/- 0.1)k(B)T, resulting in kappa = (1.8 +/- 0.2)k(B)T. The positive value of kappa and the lack of spontaneous curvature act to eliminate the spherulite defects found in the lamellar gel phases found in other catanionic mixtures. Current theories of spontaneous bilayer curvature require an excess of one or more components on opposite sides of the bilayer; the absence of such an excess at equimolar surfactant ratios explains the zero spontaneous curvature.

4.
Langmuir ; 22(6): 2465-73, 2006 Mar 14.
Article in English | MEDLINE | ID: mdl-16519442

ABSTRACT

Caillé analysis of the small-angle X-ray line shape of the lamellar phase of 7:3 wt/wt cetyltrimethylammonium tosylate (CTAT)/sodium dodecylbenzene sulfonate (SDBS) bilayers shows that the bending elastic constant is kappa = (0.62 +/- 0.09)k(B)T. From this and previous results, the Gaussian curvature constant is kappa = (-0.9 +/- 0.2)k(B)T. For 13:7 wt/wt CTAT/SDBS bilayers, the measured bending elasticity decreases with increasing water dilution, in good agreement with predictions based on renormalization theory, giving kappa(o) = 0.28k(B)T. These results show that surfactant mixing is sufficient to make kappa approximately k(B)T, which promotes strong, Helfrich-type repulsion between bilayers that can dominate the van der Waals attraction. These are necessary conditions for spontaneous vesicles to be equilibrium structures. The measurements of the bending elasticity are confirmed by the transition of the lamellar phase of CTAT/SDBS from a turbid, viscoelastic gel to a translucent fluid as the water fraction is decreased below 40 wt %. Freeze-fracture electron microscopy shows that the gel is characterized by spherulite defects made possible by spontaneous bilayer curvature and low bending elasticity. This lamellar gel phase is common to a number of catanionic surfactant mixtures, suggesting that low bending elasticity and spontaneous curvature are typical of these mixtures that form spontaneous vesicles.


Subject(s)
Surface-Active Agents/chemistry , Anions , Cations , Freeze Fracturing , Microscopy, Electron, Transmission , X-Ray Diffraction
5.
Proc Natl Acad Sci U S A ; 103(8): 2524-9, 2006 Feb 21.
Article in English | MEDLINE | ID: mdl-16467142

ABSTRACT

Mixtures of cetyltrimethylammonium tosylate (CTAT) and sodium dodecylbenzene sulfonate (SDBS) in water form a fluid lamellar phase at < or = 40 wt % water but surprisingly turn into viscous gels at higher water fractions. The gels are characterized by spherulite and other bilayer defects consistent with a low bending elasticity, kappa approximately k(B)T, and a nonzero spontaneous curvature. Caillé analysis of the small-angle x-ray line shape confirms that for 7:3 wt:wt CTAT:SDBS bilayers at 50% water, kappa = 0.62 +/- 0.09 k(B)T and kappa = -0.9 +/- 0.2 k(B)T. For 13:7 wt:wt CTAT:SDBS bilayers, the measured bending elasticity decreases with increasing water dilution in good agreement with predictions based on renormalization theory, giving kappa(o) = 0.28 k(B)T. These results show that surfactant mixing is sufficient to make kappa approximately k(B)T, which promotes strong, Helfrich-type repulsion between bilayers that can dominate the van der Waals attraction. These are necessary conditions for spontaneous vesicles formed at even higher water fractions to be equilibrium structures.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(6 Pt 1): 061511, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12188736

ABSTRACT

We report on the use of x-ray diffraction as a means of extracting velocity profiles from a non-Newtonian complex fluid under laminar flow. In particular, we applied this technique to a concentrated undulating membrane system flowing through a cylindrical capillary tube. The intermembrane separation d was measured as a function of simple shear using a Couette flow cell. A logarithmic dependence of d as a function of the shear rate was observed, while there was a linear relationship between the fractional intermembrane spacing and the shear stress. Subsequent measurement of the system's intermembrane spacing as a function of position within the cylindrical flow pipe allowed for the calculation of a shear-rate profile within the capillary. Simple numerical integration then yielded an accurate velocity profile of the fluid flowing through the pipe. Both shear thickening and plug flow shear thinning profiles were observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...