Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 21(1): 87-103, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25624044

ABSTRACT

Magnetic resonance imaging (MRI) is being used increasingly for image-guided targeted biopsy and focal therapy of prostate cancer. In this paper, a combined rigid and deformable registration technique is proposed to register pre-treatment diagnostic 3T magnetic resonance (MR) images of the prostate, with the identified target tumor(s), to intra-treatment 1.5T MR images. The pre-treatment T2-weighted MR images were acquired with patients in a supine position using an endorectal coil in a 3T scanner, while the intra-treatment T2-weighted MR images were acquired in a 1.5T scanner before insertion of the needle with patients in the semi-lithotomy position. Both the rigid and deformable registration algorithms employ an intensity-based distance metric defined based on the modality independent neighborhood descriptors (MIND) between images. The optimization routine for estimating the rigid transformation parameters is initialized using four pairs of manually selected approximate corresponding points on the boundaries of the prostate. In this paper, the problem of deformable image registration is approached from the perspective of state estimation for dynamical systems. The registration algorithm employs a rather generic dynamic linear elastic model of the tissue deformation discretized by the finite element method (FEM). We use the model in a classical state estimation framework to estimate the deformation of the prostate based on the distance metric between pre- and intra-treatment images. Our deformable registration results using 17 sets of prostate MR images showed that the proposed method yielded a target registration error (TRE) of 1.87 ± 0.94 mm,2.03 ± 0.94 mm, and 1.70 ± 0.93 mm for the whole gland (WG), central gland (CG), and peripheral zone (PZ), respectively, using 76 manually-identified fiducial points. This was an improvement over the 2.67 ± 1.31 mm, 2.95 ± 1.43 mm, and 2.34 ± 1.11 mm, respectively for the WG, CG, and PZ after rigid registration alone. Dice similarity coefficients (DSC) in the WG, CG and PZ were 88.2 ± 5.3, 85.6 ± 7.6 and 68.7 ± 6.9 percent, respectively. Furthermore, the mean absolute distances (MAD) between surfaces was 1.26 ± 0.56 mm and 1.27 ± 0.55 mm in the WG and CG, after deformable registration. These results indicate that the proposed registration technique has sufficient accuracy for localizing prostate tumors in MRI-guided targeted biopsy or focal therapy of clinically localized prostate cancer.


Subject(s)
Elasticity Imaging Techniques/methods , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Prostate/pathology , Prostate/physiopathology , Subtraction Technique , Algorithms , Artificial Intelligence , Elastic Modulus , Humans , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Male , Reproducibility of Results , Sensitivity and Specificity
2.
Phys Med Biol ; 59(22): 6891-921, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25350234

ABSTRACT

A unified framework for automatic non-rigid 3D-3D and 3D-2D registration of medical images with static and dynamic deformations is proposed in this paper. The problem of non-rigid image registration is approached as a classical state estimation problem using a generic deformation model for the soft tissue. The registration technique employs a dynamic linear elastic continuum mechanics model of the tissue deformation, which is discretized using the finite element method. In the proposed method, the registration is achieved through a Kalman-like filtering process, which incorporates information from the deformation model and a vector of observation prediction errors computed from an intensity-based similarity/distance metric between images. With this formulation, single and multiple-modality, 3D-3D and 3D-2D image registration problems can all be treated within the same framework. The performance of the proposed registration technique was evaluated in a number of different registration scenarios. First, 3D magnetic resonance (MR) images of uncompressed and compressed breast tissue were co-registered. 3D MR images of the uncompressed breast tissue were also registered to a sequence of simulated 2D interventional MR images of the compressed breast. Finally, the registration algorithm was employed to dynamically track a target sub-volume inside the breast tissue during the process of the biopsy needle insertion based on registering pre-insertion 3D MR images to a sequence of real-time simulated 2D interventional MR images. Registration results indicate that the proposed method can be effectively employed for the registration of medical images in image-guided procedures, such as breast biopsy in which the tissue undergoes static and dynamic deformations.


Subject(s)
Algorithms , Breast/pathology , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Models, Theoretical , Biopsy , Female , Humans
3.
Med Eng Phys ; 36(9): 1197-204, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25023957

ABSTRACT

We present a breast tissue stabilization device that can be used in magnetic resonance imaging-guided biopsy. The device employs adjustable support plates with an optimized geometry to minimize the biopsy target displacement using smaller compression than the conventional parallel plates approach. It is expected that the reduced compression will cause less patient discomfort and improve image quality by enhancing the contrast intake. Precomputed optimal positions of the stabilization plates for a given biopsy target location are provided in a look-up table. The results of several experiments with a prototype of the device carried out on chicken breast tissue demonstrate the effectiveness of the new design when compared with conventional stabilization methods. The proposed stabilization mechanism provides excellent flexibility in selecting the needle insertion point and can be used in manual as well as robot-assisted biopsy procedures.


Subject(s)
Biopsy, Needle/instrumentation , Biopsy, Needle/methods , Breast/pathology , Image-Guided Biopsy , Magnetic Resonance Imaging, Interventional , Algorithms , Computer Simulation , Elasticity , Equipment Design , Female , Humans , Linear Models , Magnetic Resonance Imaging, Interventional/instrumentation , Magnetic Resonance Imaging, Interventional/methods , Models, Biological
4.
Int J Numer Method Biomed Eng ; 30(3): 365-81, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24166875

ABSTRACT

The physics of deformation for biological soft-tissue is best described by nonlinear continuum mechanics-based models, which then can be discretized by the FEM for a numerical solution. However, computational complexity of such models have limited their use in applications requiring real-time or fast response. In this work, we propose a graphic processing unit-based implementation of the FEM using implicit time integration for dynamic nonlinear deformation analysis. This is the most general formulation of the deformation analysis. It is valid for large deformations and strains and can account for material nonlinearities. The data-parallel nature and the intense arithmetic computations of nonlinear FEM equations make it particularly suitable for implementation on a parallel computing platform such as graphic processing unit. In this work, we present and compare two different designs based on the matrix-free and conventional preconditioned conjugate gradients algorithms for solving the FEM equations arising in deformation analysis. The speedup achieved with the proposed parallel implementations of the algorithms will be instrumental in the development of advanced surgical simulators and medical image registration methods involving soft-tissue deformation.


Subject(s)
Computer Graphics , Computer Simulation , Image Processing, Computer-Assisted/methods , Surgical Procedures, Operative/education , Algorithms , Finite Element Analysis , Models, Theoretical , Nonlinear Dynamics
5.
IEEE Trans Haptics ; 6(4): 484-95, 2013.
Article in English | MEDLINE | ID: mdl-24808400

ABSTRACT

A series of human factors experiments involving maneuvering and grasping tasks are carried out to evaluate the effectiveness of a novel asymmetric semiautonomous teleoperation (AST) control design framework for teleoperation of mobile twin-arm robotic manipulators. Simplified configurations are examined first to explore control strategies for different aspects of such teleoperation tasks. These include teleoperation of a nonholonomic mobile base, telemanipulation of a dual-arm robot, and dual-arm/dual-operator teleoperation task scenarios. In two sets of experiments with a planar nonholonomic mobile base, teleoperation via a 3DOF planar haptic interface with position mapping and force reflection of the nonholonomic constraint decreases task-completion-time (TCT) and reduces unwanted collisions. In dual-arm and dual-operator teleoperation maneuverability experiments, the assignment of decoupled and nonconflicting control frames reduces TCT and unwanted contacts. The use of so-called "soft" constraints via passive semiautonomous control reduces TCT and unwanted block drops in telegrasping experiments with a twin-arm manipulator. A final comprehensive experiment encompassing elements of the simplified configurations demonstrates the effectiveness of AST control framework in dual-operator teleoperation of a twin-arm mobile manipulator.


Subject(s)
Man-Machine Systems , Robotics/instrumentation , Robotics/methods , Task Performance and Analysis , Algorithms , Equipment Design/methods , Humans , Touch Perception/physiology , User-Computer Interface
6.
Article in English | MEDLINE | ID: mdl-22003650

ABSTRACT

We have developed an automatic model-based deformable registration method applicable to MR soft-tissue imaging. The registration algorithm uses a dynamic finite element (FE) continuum mechanics model of the tissue deformation to register its 3D preoperative images with intraoperative 1) 3D low-resolution or 2) 2D MR images. The registration is achieved through a filtering process that combines information from the deformation model and observation errors based on correlation ratio, mutual information or sum of square differences between images. Experimental results with a breast phantom show that the proposed method converges in few iterations in the presence of very large deformations, similar to those typically observed in breast biopsy applications.


Subject(s)
Breast Neoplasms/pathology , Breast/pathology , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Algorithms , Biopsy , Breast Neoplasms/diagnosis , Female , Finite Element Analysis , Humans , Models, Statistical , Models, Theoretical , Phantoms, Imaging
7.
Article in English | MEDLINE | ID: mdl-22255432

ABSTRACT

A method is proposed for automatic registration of 3D preoperative magnetic resonance images of deformable tissue to a sequence of its 2D intraoperative images. The algorithm employs a dynamic continuum mechanics model of the deformation and similarity (distance) measures such as correlation ratio, mutual information or sum of squared differences for registration. The registration is solely based on information present in the 3D preoperative and 2D intraoperative images and does not require fiducial markers, feature extraction or image segmentation. Results of experiments with a biopsy training breast phantom show that the proposed method can perform well in the presence of large deformations. This is particularly useful for clinical applications such as MR-based breast biopsy where large tissue deformations occur.


Subject(s)
Magnetic Resonance Imaging/methods , Models, Theoretical , Humans
8.
Article in English | MEDLINE | ID: mdl-22255436

ABSTRACT

We present a parallel implementation of a new deformable image registration algorithm using the Computer Unified Device Architecture (CUDA). The algorithm co-registers preoperative and intraoperative 3-dimensional magnetic resonance (MR) images of a deforming organ. It employs a linear elastic dynamic finite-element model of the deformation and distance measures such as mutual information and sum of squared differences to align volumetric image data sets. Computationally intensive elements of the method such as interpolation, displacement and force calculation are significantly accelerated using a Graphics Processing Unit (GPU). The result of experiments carried out with a realistic breast phantom tissue shows a 37 fold speedup for the GPU-based implementation compared with an optimized CPU-based implementation in high resolution MR image registration. The GPU implementation is capable of registering 512 × 512 × 136 image sets in just over 2 seconds, making it suitable for clinical applications requiring fast and accurate processing of medical images.


Subject(s)
Computer Graphics/instrumentation , Image Interpretation, Computer-Assisted/instrumentation , Imaging, Three-Dimensional/instrumentation , Magnetic Resonance Imaging/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Subtraction Technique/instrumentation , Equipment Design , Equipment Failure Analysis , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...