Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 17(3): 394-412, 2023 06.
Article in English | MEDLINE | ID: mdl-37099472

ABSTRACT

Capacitive electrocardiogram (cECG) systems are increasingly used for the monitoring of cardiac activity. They can operate within the presence of a small layer of air, hair or cloth and do not require a qualified technician. They can be integrated into wearables, clothing or objects of daily life, such as beds or chairs. While they offer many advantages over conventional electrocardiogram systems (ECG) that rely on wet electrodes, they are more prone to be affected by motion artifacts (MAs). These effects, which are due to the relative movement of the electrode in relation to the skin, are several orders of magnitude higher than ECG signal amplitudes, they occur in frequencies that might overlap with the ECG signal, and they may saturate the electronics in the most severe cases. In this paper, we provide a detailed description of MA mechanisms that translate into capacitance variations due to electrode-skin geometric changes or into triboelectric effects due to electrostatic charge redistribution. A state-of-the-art overview of the different approaches based on materials and construction, analog circuits and digital signal processing is provided as well as the trade-offs to be made using these techniques, to mitigate MAs efficiently.


Subject(s)
Artifacts , Electrocardiography , Electrocardiography/methods , Motion , Movement , Signal Processing, Computer-Assisted , Electrodes
2.
J Electr Bioimpedance ; 9(1): 59-71, 2018 Jan.
Article in English | MEDLINE | ID: mdl-33584922

ABSTRACT

Bioimpedance measurement systems often use the Howland current sources to excite the biological material under study. Usually, difference or instrumentation amplifiers are used to measure the resulting voltage drop on this material. In these circuits, common mode voltage appears as artifacts in the measurement. Most researches on current sources are focused on improving the output impedance, letting other characteristics aside. In this paper, it is made a brief review on the load common mode voltage and output swing of various topologies of Howland current sources. Three circuits are proposed to reduce load common mode voltage and enhance load capability by using a fully differential amplifier as active component. These circuits are equated, simulated and implemented. The three proposed circuits were able to deliver an output current with cut-off frequency (-3dB) higher than 1 MHz for loads as big as 4.7 kΩ. The worst measured load common mode voltage was smaller than 24 mV for one of the circuits and smaller than 8 mV for the other two. Consequently, it could be obtained increases in the Common Mode Rejection Ratio (CMRR) up to 60 dB when compared to the Enhanced Howland Current Source (EHCS).

3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 157-160, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29059834

ABSTRACT

In order to test and calibrate an EIT (Electrical Impedance Tomography) system, many researchers rely on phantoms mimicking breast tissues. These phantoms are usually made of saline solutions, agar and/or vegetables, allowing the user to set the conductivity of the material by changing the salt concentration. Due to that fact that the dispersion behavior in the vicinity of megahertz is fundamental to detect carcinoma, this work aims to propose a phantom composed by a mixture of agar and gelatin (emulating the normal tissue) and a piece of carrot (emulating the carcinoma). It also investigates the frequency dependence from 1 to 10,000 kHz. The proposed phantom showed capability to mimic some absolute and relative electrical parameters used to detect cancer according to the literature. The differences in the impedance modulus were found to be more dispersive in the mimic carcinoma tissue type than the normal mimic one. It is simple to prepare, low cost, has similar electrical properties to the ones that have been used in the literature, better mechanical properties and longer life time. It can be concluded that gelatin-agar gel may have a high potential to be used as a breast tissue phantom.


Subject(s)
Breast , Phantoms, Imaging , Agar , Electric Impedance , Tomography , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...