Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-24779228

ABSTRACT

Low dielectric loss Zn07Mg0.3TiO3 and MgTiO3 microwave dielectric resonators were prepared by the conventional solid state reaction method. The microwave interaction with these materials has been studied using both single-mode and multimode microwave furnaces operating at a frequency of 2.45 GHz. Microwave sintering could be achieved using a multimode microwave furnace only, whereas, interaction with a single-mode furnace showed plasma generation. Phase formation was observed by X-ray diffraction. Microwave dielectric characteristics such as dielectric constant (epsilon'), quality factor (Q x f) and temperature coefficient of resonant frequency (tauf) of microwave sintered samples were measured using a vector network analyzer and compared with conventional sintered ones. Microstructure of all the conventional and microwave sintered samples was observed using high resolution scanning electron microscope. Although epsilon' and tauf of the conventional and microwave sintered samples are found to be comparable, the quality factor (the vital characteristic of dielectric resonators) of microwave sintered samples are observed to be much lower than those obtained by conventional sintering. The difference in these values is discussed with respect to the grain size.

2.
Article in English | MEDLINE | ID: mdl-24427876

ABSTRACT

Microwave sintering of materials significantly depends on dielectric, magnetic and conductive Losses. Samples with high dielectric and magnetic loss such as ferrites could be sintered easily. But low dielectric loss material such as dielectric resonators (paraelectrics) finds difficulty in generation of heat during microwave interaction. Microwave sintering of materials of these two classes helps in understanding the variation in dielectric and magnetic characteristics with respect to the change in grain size. High-energy ball milled Ni0.6Cu0.2Zn0.2Fe1.98O4-delta and ZnTiO3 are sintered in conventional and microwave methods and characterized for respective dielectric and magnetic characteristics. The grain size variation with higher copper content is also observed with conventional and microwave sintering. The grain size in microwave sintered Ni0.6Cu0.2Zn0.2Fe1.98O4-delta is found to be much small and uniform in comparison with conventional sintered sample. However, the grain size of microwave sintered sample is almost equal to that of conventional sintered sample of Ni0.3Cu0.5Zn0.2Fe1.98O4-delta. In contrast to these high dielectric and magnetic loss ferrites, the paraelectric materials are observed to sinter in presence of microwaves. Although microwave sintered zinc titanate sample showed finer and uniform grains with respect to conventional samples, the dielectric characteristics of microwave sintered sample are found to be less than that of conventional sample. Low dielectric constant is attributed to the low density. Smaller grain size is found to be responsible for low quality factor and the presence of small percentage of TiO2 is observed to achieve the temperature stable resonant frequency.


Subject(s)
Ceramics/chemistry , Ceramics/radiation effects , Copper/chemistry , Heating/methods , Microwaves , Nickel/chemistry , Copper/radiation effects , Electric Impedance , Materials Testing , Nickel/radiation effects , Particle Size , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...