Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
BMC Genet ; 12: 95, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-22054484

ABSTRACT

BACKGROUND: High recombination rates have previously been detected in two groups of eusocial insects; honeybees and ants. In this study we estimate recombination rate in a eusocial wasp Vespula vulgaris that represents a third phylogenetic lineage within eusocial hymenopterans. RESULTS: A genetic linkage map of V. vulgaris based on 210 markers shows that the total map length is 2129 cM and the recombination rate is 9.7 cM/Mb (or 103 kb/cM). The present estimate in V. vulgaris is somewhat smaller than in the honeybee Apis mellifera and intermediate between the estimates from two ant species (Acromyrmex echinatior, Pogonomyrmex rugosus). Altogether, the estimates from these eusocial species are higher than in any other insect reported so far. CONCLUSIONS: [corrected] The four species (V. vulgaris, A. mellifera, A. echinatior, P. rugosus) are characterized by advanced eusociality with large colonies, clear queen-worker dimorphism and well developed task specialization. They also have colonies with a single, normally multiply inseminated (polyandrous) queen. Benefits of genotypic diversity within colonies (e.g. through improved task specialization or pathogen and parasite resistance) may have selected for both polyandry and high recombination rate in such advanced eusocial insects.


Subject(s)
Bees/genetics , Recombination, Genetic , Wasps/genetics , Animals , Ants/genetics , Biological Evolution , Genetic Linkage , Genetic Markers , Genetic Variation , Genotype , Male , Microsatellite Repeats , Phylogeny
2.
Evolution ; 65(3): 869-84, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21083661

ABSTRACT

Hybridizing harvester ants of the Pogonomyrmex barbatus/rugosus complex have an exceptional genetic caste determination (GCD) mechanism. We combined computer simulations, population genomics, and linkage mapping using >1000 nuclear AFLP markers and a partial mtDNA sequence to explore the genetic architecture and origin of the dependent lineages. Our samples included two pairs of hybridizing lineages, and the mitochondrial and nuclear data showed contradicting affinities between them. Clustering of individual genotypes based on nuclear markers indicated some exceptions to the general GCD system, that is, interlineage hybrid genes as well as some pure-line workers. A genetic linkage map of P. rugosus showed one of the highest recombination rates ever measured in insects (14.0 cM/Mb), supporting the view that social insects are characterized by high recombination rates. The population data had 165 markers in which sibling pairs showed a significant genetic difference depending on the caste. The differences were scattered in the genome; 13 linkage groups had loci with F(ST)>0.9 between the hybridizing lineages J1 and J2.The mapping results and the population data indicate that the dependent lineages have been initially formed through hybridization at different points in time but the role of introgression has been insignificant in their later evolution.


Subject(s)
Ants/genetics , Biological Evolution , Amplified Fragment Length Polymorphism Analysis , Animals , Chromosome Mapping , Computer Simulation , DNA, Mitochondrial/genetics
3.
BMC Evol Biol ; 10: 335, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-21040533

ABSTRACT

BACKGROUND: Many insects, including ants, are infected by maternally inherited Wolbachia endosymbiotic bacteria though other secondary endosymbionts have not been reported in ants. It has been suggested that the ability of Wolbachia to invade and remain in an ant population depends on the number of coexisting queens in a colony. We study the genetic and social structure of populations in the ant Formica cinerea which is known to have populations with either monogynous or polygynous colonies. We screen populations for several endosymbiotic bacteria to evaluate the presence of different endosymbionts, possible association between their prevalence and the social structure, and the association between endosymbiont prevalence and genetic differentiation of ant populations. RESULTS: We found three endosymbiotic bacteria; 19% of the nests were infected by Wolbachia, 3.8% by Cardinium and 33% by Serratia. There was significant variation among the populations regarding the proportion of nests infected by Serratia, Wolbachia and the pooled set of all the endosymbionts. Some individuals and colonies carried two of the bacteria, the frequency of double infections agreeing with the random expectation. The proportion of infected ants (individuals or colonies) did not correlate significantly with the population level relatedness values. The difference in the prevalence of Wolbachia between population pairs correlated significantly with the genetic distance (microsatellites) of the populations. CONCLUSIONS: The discovery of several endosymbionts and co-infections by Wolbachia and Cardinium demonstrate the importance of screening several endosymbionts when evaluating their possible effects on social life and queen-worker conflicts over sex allocation. The low prevalence of Wolbachia in F. cinerea departs from the pattern observed in many other Formica ants in which all workers have been infected. It is likely that the strain of Wolbachia in F. cinerea differs from those in other Formica species. The correlation between the difference in Wolbachia prevalence and the pair-wise genetic distance of populations suggests that spreading of the bacteria is restricted by the isolation of the host populations.


Subject(s)
Ants/microbiology , Symbiosis/physiology , Animals , Ants/genetics , Ants/physiology , Female , Male , Microsatellite Repeats/genetics , Serratia/genetics , Serratia/growth & development , Social Behavior , Symbiosis/genetics , Wolbachia/genetics , Wolbachia/growth & development
4.
Genome Res ; 16(11): 1339-44, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17065604

ABSTRACT

The first draft of the honey bee genome sequence and improved genetic maps are utilized to analyze a genome displaying 10 times higher levels of recombination (19 cM/Mb) than previously analyzed genomes of higher eukaryotes. The exceptionally high recombination rate is distributed genome-wide, but varies by two orders of magnitude. Analysis of chromosome, sequence, and gene parameters with respect to recombination showed that local recombination rate is associated with distance to the telomere, GC content, and the number of simple repeats as described for low-recombining genomes. Recombination rate does not decrease with chromosome size. On average 5.7 recombination events per chromosome pair per meiosis are found in the honey bee genome. This contrasts with a wide range of taxa that have a uniform recombination frequency of about 1.6 per chromosome pair. The excess of recombination activity does not support a mechanistic role of recombination in stabilizing pairs of homologous chromosome during chromosome pairing. Recombination rate is associated with gene size, suggesting that introns are larger in regions of low recombination and may improve the efficacy of selection in these regions. Very few transposons and no retrotransposons are present in the high-recombining genome. We propose evolutionary explanations for the exceptionally high genome-wide recombination rate.


Subject(s)
Bees/genetics , Genome, Insect , Recombination, Genetic , Animals , Base Composition , Chromosomes/genetics , DNA/chemistry , DNA/genetics , Genes, Insect , Minisatellite Repeats , Molecular Sequence Data , Polymorphism, Genetic
5.
Mol Biol Evol ; 19(2): 179-88, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11801746

ABSTRACT

Nucleotide polymorphism in Scots pine (Pinus sylvestris) was studied in the gene encoding phenylalanine ammonia-lyase (Pal, EC 4.3.1.5). Scots pine, like many other pine species, has a large current population size. The observed levels of inbreeding depression suggest that Scots pine may have a high mutation rate to deleterious alleles. Many Scots pine markers such as isozymes, RFLPs, and microsatellites are highly variable. These observations suggest that the levels of nucleotide variation should be higher than those in other plant species. A 2,045-bp fragment of the pal1 locus was sequenced from five megagametophytes each from a different individual from each of four populations, from northern and southern Finland, central Russia, and northern Spain. There were 12 segregating sites in the locus. The synonymous site overall nucleotide diversity was only 0.0049. In order to compare pal1 with other pine genes, sequence was obtained from two alleles of 11 other loci (total length 4,606 bp). For these, the synonymous nucleotide diversity was 0.0056. These estimates are lower than those from other plants. This is most likely because of a low mutation rate, as estimated from between-pine species synonymous site divergence. In other respects, Scots pine has the characteristics of a species with a large effective population. There was no linkage disequilibrium even between closely linked sites. This resulted in high haplotype diversity (14 different haplotypes among 20 sequences). This could also give rise to high per locus diversity at the protein level. Divergence between populations in the main range was low, whereas an isolated Spanish population had slightly lower diversity and higher divergence than the remaining populations.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Fungal Proteins/genetics , Linkage Disequilibrium/genetics , Pinus/genetics , Saccharomyces cerevisiae Proteins , Seeds/genetics , Codon , DNA Primers/chemistry , DNA, Plant/genetics , Genetic Variation , Genetics, Population , Isoenzymes/genetics , Mutation/genetics , Pinus sylvestris , Polymerase Chain Reaction , Polymorphism, Genetic , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...