Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Front Cell Infect Microbiol ; 13: 1245874, 2023.
Article in English | MEDLINE | ID: mdl-37780859

ABSTRACT

The interactions between bacterial species during infection can have significant impacts on pathogenesis. Pseudomonas aeruginosa and Staphylococcus aureus are opportunistic bacterial pathogens that can co-infect hosts and cause serious illness. The factors that dictate whether one species outcompetes the other or whether the two species coexist are not fully understood. We investigated the role of surfactants in the interactions between these two species on a surface that enables P. aeruginosa to swarm. We found that P. aeruginosa swarms are repelled by colonies of clinical S. aureus isolates, creating physical separation between the two strains. This effect was abolished in mutants of S. aureus that were defective in the production of phenol-soluble modulins (PSMs), which form amyloid fibrils around wild-type S. aureus colonies. We investigated the mechanism that establishes physical separation between the two species using Imaging of Reflected Illuminated Structures (IRIS), which is a non-invasive imaging method that tracks the flow of surfactants produced by P. aeruginosa. We found that PSMs produced by S. aureus deflected the surfactant flow, which in turn, altered the direction of P. aeruginosa swarms. These findings show that rhamnolipids mediate physical separation between P. aeruginosa and S. aureus, which could facilitate coexistence between these species. Additionally, we found that a number of molecules repelled P. aeruginosa swarms, consistent with a surfactant deflection mechanism. These include Bacillus subtilis surfactant, the fatty acids oleic acid and linoleic acid, and the synthetic lubricant polydimethylsiloxane. Lung surfactant repelled P. aeruginosa swarms and inhibited swarm expansion altogether at higher concentration. Our results suggest that surfactant interactions could have major impacts on bacteria-bacteria and bacteria-host relationships. In addition, our findings uncover a mechanism responsible for P. aeruginosa swarm development that does not rely solely on sensing but instead is based on the flow of surfactant.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Pseudomonas aeruginosa , Staphylococcus aureus/genetics , Staphylococcal Infections/microbiology , Biofilms , Surface-Active Agents
2.
Biophys Rev (Melville) ; 4(3): 031305, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37781002

ABSTRACT

Swarming is a collective flagella-dependent movement of bacteria across a surface that is observed across many species of bacteria. Due to the prevalence and diversity of this motility modality, multiple models of swarming have been proposed, but a consensus on a general mechanism for swarming is still lacking. Here, we focus on swarming by Pseudomonas aeruginosa due to the abundance of experimental data and multiple models for this species, including interpretations that are rooted in biology and biophysics. In this review, we address three outstanding questions about P. aeruginosa swarming: what drives the outward expansion of a swarm, what causes the formation of dendritic patterns (tendrils), and what are the roles of flagella? We review models that propose biologically active mechanisms including surfactant sensing as well as fluid mechanics-based models that consider swarms as thin liquid films. Finally, we reconcile recent observations of P. aeruginosa swarms with early definitions of swarming. This analysis suggests that mechanisms associated with sliding motility have a critical role in P. aeruginosa swarm formation.

3.
Article in English | MEDLINE | ID: mdl-37427092

ABSTRACT

Swarming is a collective bacterial behavior in which a dense population of bacterial cells moves over a porous surface, resulting in the expansion of the population. This collective behavior can guide bacteria away from potential stressors such as antibiotics and bacterial viruses. However, the mechanisms responsible for the organization of swarms are not understood. Here, we briefly review models that are based on bacterial sensing and fluid mechanics that are proposed to guide swarming in the pathogenic bacterium Pseudomonas aeruginosa. To provide further insight into the role of fluid mechanics in P. aeruginosa swarms, we track the movement of tendrils and the flow of surfactant using a novel technique that we have developed, Imaging of Reflected Illuminated Structures (IRIS). Our measurements show that tendrils and surfactants form distinct layers that grow in lockstep with each other. The results raise new questions about existing swarming models and the possibility that the flow of surfactants impacts tendril development. These findings emphasize that swarm organization involves an interplay between biological processes and fluid mechanics.

4.
Trends Immunol ; 42(6): 464-468, 2021 06.
Article in English | MEDLINE | ID: mdl-33994111

ABSTRACT

Aging is associated with decreased antigen-specific immunity and increased chronic inflammation. While DNA-sensing pathways might be involved, the molecular factors underlying these age-related aberrancies in immune signaling are unclear. Here, we consider the potential role of aging-induced hypomethylated DNA as a putative stimulant of age-associated inflammation.


Subject(s)
Aging , Signal Transduction , DNA , Humans , Inflammation
5.
Phys Biol ; 18(5)2021 06 23.
Article in English | MEDLINE | ID: mdl-33462162

ABSTRACT

Bacterial biofilms are communities of bacteria that exist as aggregates that can adhere to surfaces or be free-standing. This complex, social mode of cellular organization is fundamental to the physiology of microbes and often exhibits surprising behavior. Bacterial biofilms are more than the sum of their parts: single-cell behavior has a complex relation to collective community behavior, in a manner perhaps cognate to the complex relation between atomic physics and condensed matter physics. Biofilm microbiology is a relatively young field by biology standards, but it has already attracted intense attention from physicists. Sometimes, this attention takes the form of seeing biofilms as inspiration for new physics. In this roadmap, we highlight the work of those who have taken the opposite strategy: we highlight the work of physicists and physical scientists who use physics to engage fundamental concepts in bacterial biofilm microbiology, including adhesion, sensing, motility, signaling, memory, energy flow, community formation and cooperativity. These contributions are juxtaposed with microbiologists who have made recent important discoveries on bacterial biofilms using state-of-the-art physical methods. The contributions to this roadmap exemplify how well physics and biology can be combined to achieve a new synthesis, rather than just a division of labor.


Subject(s)
Bacterial Adhesion/physiology , Bacterial Physiological Phenomena , Biofilms , Quorum Sensing/physiology , Biofilms/growth & development
6.
Front Med Technol ; 3: 640981, 2021.
Article in English | MEDLINE | ID: mdl-35047912

ABSTRACT

Antimicrobial peptides (AMPs) have been extensively studied due to their vast natural abundance and ability to kill microbes. In an era critically lacking in new antibiotics, manipulating AMPs for therapeutic application is a promising option. However, bacterial pathogens resistant to AMPs remain problematic. To improve AMPs antimicrobial efficacy, their use in conjunction with other antimicrobials has been proposed. How might this work? AMPs kill bacteria by forming pores in bacterial membranes or by inhibiting bacterial macromolecular functions. What remains unknown is the duration for which AMPs keep bacterial pores open, and the extent to which bacteria can recover by repairing these pores. In this mini-review, we discuss various antimicrobial synergies with AMPs. Such synergies might arise if the antimicrobial agents helped to keep bacterial pores open for longer periods of time, prevented pore repair, perturbed bacterial intracellular functions at greater levels, or performed other independent bacterial killing mechanisms. We first discuss combinations of AMPs, and then focus on histones, which have antimicrobial activity and co-localize with AMPs on lipid droplets and in neutrophil extracellular traps (NETs). Recent work has demonstrated that histones can enhance AMP-induced membrane permeation. It is possible that histones, histone fragments, and histone-like peptides could amplify the antimicrobial effects of AMPs, giving rise to antimicrobial synergy. If so, clarifying these mechanisms will thus improve our overall understanding of the antimicrobial processes and potentially contribute to improved drug design.

7.
Microb Cell ; 7(11): 309-311, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33150163

ABSTRACT

The rate at which antibiotics are discovered and developed has stagnated; meanwhile, antibacterial resistance continually increases and leads to a plethora of untreatable and deadly infections worldwide. Therefore, there is a critical need to develop new antimicrobial strategies to combat this alarming reality. One approach is to understand natural antimicrobial defense mechanisms that higher-level organisms employ in order to kill bacteria, potentially leading to novel antibiotic therapeutic approaches. Mammalian histones have long been reported to have antibiotic activity, with the first observation of their antibacterial properties reported in 1942. However, there have been doubts about whether histones could truly have any such role in the animal, predominantly based on two issues: they are found in the nucleus (so are not in a position to encounter bacteria), and their antibiotic activity in vitro has been relatively weak in physiological conditions. More recent studies have addressed both sets of concerns. Histones are released from cells as part of neutrophil extracellular traps (NETs) and are thus able to encounter extracellular bacteria. Histones are also present intracellularly in the cytoplasm attached to lipid droplets, positioning them to encounter cytosolic bacteria. Our recent work (Doolin et al., 2020, Nat Commun), which is discussed here, shows that histones have synergistic antimicrobial activities when they are paired with antimicrobial peptides (AMPs), which form pores in bacterial membranes and co-localize with histones in NETs. The work demonstrates that histones enhance AMP-mediated pores, impair bacterial membrane recovery, depolarize the bacterial proton gradient, and enter the bacterial cytoplasm, where they restructure the chromosome and inhibit transcription. Here, we examine potential mechanisms that are responsible for these outcomes.

8.
Adv Exp Med Biol ; 1267: 117-133, 2020.
Article in English | MEDLINE | ID: mdl-32894480

ABSTRACT

Antibiotic resistance is a global epidemic, becoming increasingly pressing due to its rapid spread. There is thus a critical need to develop new therapeutic approaches. In addition to searching for new antibiotics, looking into existing mechanisms of natural host defense may enable researchers to improve existing defense mechanisms, and to develop effective, synthetic drugs guided by natural principles. Histones, primarily known for their role in condensing mammalian DNA, are antimicrobial and share biochemical similarities with antimicrobial peptides (AMPs); however, the mechanism by which histones kill bacteria is largely unknown. Both AMPs and histones are similar in size, cationic, contain a high proportion of hydrophobic amino acids, and possess the ability to form alpha helices. AMPs, which mostly kill bacteria through permeabilization or disruption of the biological membrane, have recently garnered significant attention for playing a key role in host defenses. This chapter outlines the structure and function of histone proteins as they compare to AMPs and provides an overview of their role in innate immune responses, especially regarding the action of specific histones against microorganisms and their potential mechanism of action against microbial pathogens.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/immunology , Bacteria/immunology , Histones/chemistry , Histones/immunology , Animals , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Bacteria/drug effects , Histones/pharmacology , Immunity, Innate
9.
Nat Commun ; 11(1): 3888, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32753666

ABSTRACT

First proposed as antimicrobial agents, histones were later recognized for their role in condensing chromosomes. Histone antimicrobial activity has been reported in innate immune responses. However, how histones kill bacteria has remained elusive. The co-localization of histones with antimicrobial peptides (AMPs) in immune cells suggests that histones may be part of a larger antimicrobial mechanism in vivo. Here we report that histone H2A enters E. coli and S. aureus through membrane pores formed by the AMPs LL-37 and magainin-2. H2A enhances AMP-induced pores, depolarizes the bacterial membrane potential, and impairs membrane recovery. Inside the cytoplasm, H2A reorganizes bacterial chromosomal DNA and inhibits global transcription. Whereas bacteria recover from the pore-forming effects of LL-37, the concomitant effects of H2A and LL-37 are irrecoverable. Their combination constitutes a positive feedback loop that exponentially amplifies their antimicrobial activities, causing antimicrobial synergy. More generally, treatment with H2A and the pore-forming antibiotic polymyxin B completely eradicates bacterial growth.


Subject(s)
Anti-Infective Agents/pharmacology , Bacteria/drug effects , Bacteria/genetics , Chromosome Structures/drug effects , Histones/metabolism , Protons , Animals , Chromosome Structures/metabolism , Chromosomes, Bacterial/metabolism , DNA, Bacterial/metabolism , Drug Synergism , Escherichia coli/drug effects , Escherichia coli/metabolism , Immunity, Innate , Mammals , Polymyxin B/pharmacology , Sequence Analysis, RNA , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism
10.
J Vis Exp ; (159)2020 05 23.
Article in English | MEDLINE | ID: mdl-32510504

ABSTRACT

Swarming is a form of surface motility observed in many bacterial species including Pseudomonas aeruginosa and Escherichia coli. Here, dense populations of bacteria move over large distances in characteristic tendril-shaped communities over the course of hours. Swarming is sensitive to several factors including medium moisture, humidity, and nutrient content. In addition, the collective stress response, which is observed in P. aeruginosa that are stressed by antibiotics or bacteriophage (phage), repels swarms from approaching the area containing the stress. The methods described here address how to control the critical factors that affect swarming. We introduce a simple method to monitor swarming dynamics and the collective stress response with high temporal resolution using a flatbed document scanner, and describe how to compile and perform a quantitative analysis of swarms. This simple and cost-effective method provides precise and well-controlled quantification of swarming and may be extended to other types of plate-based growth assays and bacterial species.


Subject(s)
Pseudomonas aeruginosa/physiology , Stress, Physiological , Time-Lapse Imaging , Anti-Bacterial Agents/pharmacology , Bacteriophages/physiology , Cost-Benefit Analysis , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/virology , Time-Lapse Imaging/economics
11.
ACS Pharmacol Transl Sci ; 3(3): 418-424, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32566907

ABSTRACT

The ribosomally produced antimicrobial peptides of bacteria (bacteriocins) represent an unexplored source of membrane-active antibiotics. We designed a library of linear peptides from a circular bacteriocin and show that pore-formation dynamics in bacterial membranes are tunable via selective amino acid substitution. We observed antibacterial interpeptide synergy indicating that fundamentally altering interactions with the membrane enables synergy. Our findings suggest an approach for engineering pore-formation through rational peptide design and increasing the utility of novel antimicrobial peptides by exploiting synergy.

12.
mBio ; 11(2)2020 03 10.
Article in English | MEDLINE | ID: mdl-32156820

ABSTRACT

The availability of energy has significant impact on cell physiology. However, the role of cellular metabolism in bacterial pathogenesis is not understood. We investigated the dynamics of central metabolism during virulence induction by surface sensing and quorum sensing in early-stage biofilms of the multidrug-resistant bacterium Pseudomonas aeruginosa We established a metabolic profile for P. aeruginosa using fluorescence lifetime imaging microscopy (FLIM), which reports the activity of NADH in live cells. We identified a critical growth transition period during which virulence is activated. We performed FLIM measurements and direct measurements of NADH and NAD+ concentrations during this period. Here, planktonic (low-virulence) and surface-attached (virulence-activated) populations diverged into distinct metabolic states, with the surface-attached population exhibiting FLIM lifetimes that were associated with lower levels of enzyme-bound NADH and decreasing total NAD(H) production. We inhibited virulence by perturbing central metabolism using citrate and pyruvate, which further decreased the enzyme-bound NADH fraction and total NAD(H) production and suggested the involvement of the glyoxylate pathway in virulence activation in surface-attached populations. In addition, we induced virulence at an earlier time using the electron transport chain oxidase inhibitor antimycin A. Our results demonstrate the use of FLIM to noninvasively measure NADH dynamics in biofilms and suggest a model in which a metabolic rearrangement accompanies the virulence activation period.IMPORTANCE The rise of antibiotic resistance requires the development of new strategies to combat bacterial infection and pathogenesis. A major direction has been the development of drugs that broadly target virulence. However, few targets have been identified due to the species-specific nature of many virulence regulators. The lack of a virulence regulator that is conserved across species has presented a further challenge to the development of therapeutics. Here, we identify that NADH activity has an important role in the induction of virulence in the pathogen P. aeruginosa This finding, coupled with the ubiquity of NADH in bacterial pathogens, opens up the possibility of targeting enzymes that process NADH as a potential broad antivirulence approach.


Subject(s)
Biofilms/growth & development , NAD/metabolism , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/pathogenicity , Microscopy, Fluorescence , Pseudomonas aeruginosa/enzymology , Quorum Sensing , Virulence
13.
J Bacteriol ; 201(23)2019 12 01.
Article in English | MEDLINE | ID: mdl-31451543

ABSTRACT

We investigate the effect of bacteriophage infection and antibiotic treatment on the coordination of swarming, a collective form of flagellum- and pilus-mediated motility in bacteria. We show that phage infection of the opportunistic bacterial pathogen Pseudomonas aeruginosa abolishes swarming motility in the infected subpopulation and induces the release of the Pseudomonas quinolone signaling molecule PQS, which repulses uninfected subpopulations from approaching the infected area. These mechanisms have the overall effect of limiting the infection to a subpopulation, which promotes the survival of the overall population. Antibiotic treatment of P. aeruginosa elicits the same response, abolishing swarming motility and repulsing approaching swarms away from the antibiotic-treated area through a PQS-dependent mechanism. Swarms are entirely repelled from the zone of antibiotic-treated P. aeruginosa, consistent with a form of antibiotic evasion, and are not repelled by antibiotics alone. PQS has multiple functions, including serving as a quorum-sensing molecule, activating an oxidative stress response, and regulating the release of virulence and host-modifying factors. We show that PQS serves additionally as a stress warning signal that causes the greater population to physically avoid cell stress. The stress response at the collective level observed here in P. aeruginosa is consistent with a mechanism that promotes the survival of bacterial populations.IMPORTANCE We uncover a phage- and antibiotic-induced stress response in the clinically important opportunistic pathogen Pseudomonas aeruginosa Phage-infected P. aeruginosa subpopulations are isolated from uninfected subpopulations by the production of a stress-induced signal. Activation of the stress response by antibiotics causes P. aeruginosa to physically be repelled from the area containing antibiotics altogether, consistent with a mechanism of antibiotic evasion. The stress response observed here could increase P. aeruginosa resilience against antibiotic treatment and phage therapy in health care settings, as well as provide a simple evolutionary strategy to avoid areas containing stress.


Subject(s)
Fimbriae, Bacterial/metabolism , Flagella/metabolism , Pseudomonas aeruginosa/genetics , Quinolones/metabolism , Quorum Sensing/physiology , Anti-Bacterial Agents/pharmacology , Fimbriae, Bacterial/drug effects , Fimbriae, Bacterial/genetics , Flagella/drug effects , Flagella/genetics , Microbial Viability/drug effects , Movement/physiology , Pseudomonas Phages/genetics , Pseudomonas Phages/growth & development , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/virology , Quinolones/pharmacology , Signal Transduction , Stress, Physiological
14.
Nat Microbiol ; 4(8): 1274-1281, 2019 08.
Article in English | MEDLINE | ID: mdl-31086313

ABSTRACT

Multiple cell types sense fluid flow as an environmental cue. Flow can exert shear force (or stress) on cells, and the prevailing model is that biological flow sensing involves the measurement of shear force1,2. Here, we provide evidence for force-independent flow sensing in the bacterium Pseudomonas aeruginosa. A microfluidic-based transcriptomic approach enabled us to discover an operon of P. aeruginosa that is rapidly and robustly upregulated in response to flow. Using a single-cell reporter of this operon, which we name the flow-regulated operon (fro), we establish that P. aeruginosa dynamically tunes gene expression to flow intensity through a process we call rheosensing (as rheo- is Greek for flow). We further show that rheosensing occurs in multicellular biofilms, involves signalling through the alternative sigma factor FroR, and does not require known surface sensors. To directly test whether rheosensing measures force, we independently altered the two parameters that contribute to shear stress: shear rate and solution viscosity. Surprisingly, we discovered that rheosensing is sensitive to shear rate but not viscosity, indicating that rheosensing is a kinematic (force-independent) form of mechanosensing. Thus, our findings challenge the dominant belief that biological mechanosensing requires the measurement of forces.


Subject(s)
Bacteria/metabolism , Microfluidics/methods , Pseudomonas aeruginosa/metabolism , Transcriptome , Bacteria/genetics , Biofilms/growth & development , Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , Microfluidics/instrumentation , Operon , Pseudomonas aeruginosa/genetics , Rheology , Sigma Factor
15.
ACS Appl Mater Interfaces ; 11(11): 10532-10539, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30789254

ABSTRACT

Pseudomonas aeruginosa is an opportunistic, multidrug-resistant, human pathogen that forms biofilms in environments with fluid flow, such as the lungs of cystic fibrosis patients, industrial pipelines, and medical devices. P. aeruginosa twitches upstream on surfaces by the cyclic extension and retraction of its mechanoresponsive type IV pili motility appendages. The prevention of upstream motility, host invasion, and infectious biofilm formation in fluid flow systems remains an unmet challenge. Here, we describe the design and application of scalable nanopillared surface structures fabricated using nanoimprint lithography that reduce upstream motility and colonization by P. aeruginosa. We used flow channels to induce shear stress typically found in catheter tubes and microscopy analysis to investigate the impact of nanopillared surfaces with different packing fractions on upstream motility trajectory, displacement, velocity, and surface attachment. We found that densely packed, subcellular nanopillared surfaces, with pillar periodicities ranging from 200 to 600 nm and widths ranging from 70 to 215 nm, inhibit the mechanoresponsive upstream motility and surface attachment. This bacteria-nanostructured surface interface effect allows us to tailor surfaces with specific nanopillared geometries for disrupting cell motility and attachment in fluid flow systems.


Subject(s)
Nanostructures/chemistry , Cell Movement/drug effects , Nanostructures/toxicity , Polymethyl Methacrylate/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Shear Strength/drug effects , Surface Properties
16.
mBio ; 9(5)2018 09 11.
Article in English | MEDLINE | ID: mdl-30206169

ABSTRACT

The stiffness of bacteria prevents cells from bursting due to the large osmotic pressure across the cell wall. Many successful antibiotic chemotherapies target elements that alter mechanical properties of bacteria, and yet a global view of the biochemistry underlying the regulation of bacterial cell stiffness is still emerging. This connection is particularly interesting in opportunistic human pathogens such as Pseudomonas aeruginosa that have a large (80%) proportion of genes of unknown function and low susceptibility to different families of antibiotics, including beta-lactams, aminoglycosides, and quinolones. We used a high-throughput technique to study a library of 5,790 loss-of-function mutants covering ~80% of the nonessential genes and correlated P. aeruginosa individual genes with cell stiffness. We identified 42 genes coding for proteins with diverse functions that, when deleted individually, decreased cell stiffness by >20%. This approach enabled us to construct a "mechanical genome" for P. aeruginosa d-Alanine dehydrogenase (DadA) is an enzyme that converts d-Ala to pyruvate that was included among the hits; when DadA was deleted, cell stiffness decreased by 18% (using multiple assays to measure mechanics). An increase in the concentration of d-Ala in cells downregulated the expression of genes in peptidoglycan (PG) biosynthesis, including the peptidoglycan-cross-linking transpeptidase genes ponA and dacC Consistent with this observation, ultraperformance liquid chromatography-mass spectrometry analysis of murein from P. aeruginosa cells revealed that dadA deletion mutants contained PG with reduced cross-linking and altered composition compared to wild-type cells.IMPORTANCE The mechanical properties of bacteria are important for protecting cells against physical stress. The cell wall is the best-characterized cellular element contributing to bacterial cell mechanics; however, the biochemistry underlying its regulation and assembly is still not completely understood. Using a unique high-throughput biophysical assay, we identified genes coding proteins that modulate cell stiffness in the opportunistic human pathogen Pseudomonas aeruginosa This approach enabled us to discover proteins with roles in a diverse range of biochemical pathways that influence the stiffness of P. aeruginosa cells. We demonstrate that d-Ala-a component of the peptidoglycan-is tightly regulated in cells and that its accumulation reduces expression of machinery that cross-links this material and decreases cell stiffness. This research demonstrates that there is much to learn about mechanical regulation in bacteria, and these studies revealed new nonessential P. aeruginosa targets that may enhance antibacterial chemotherapies or lead to new approaches.


Subject(s)
Alanine/metabolism , Elasticity , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/physiology , Alanine Dehydrogenase/genetics , Cell Wall/chemistry , Gene Deletion , Genes, Bacterial , Metabolic Networks and Pathways/genetics , Peptidoglycan/metabolism , Pseudomonas aeruginosa/genetics
17.
J Vis Exp ; (136)2018 06 27.
Article in English | MEDLINE | ID: mdl-30010653

ABSTRACT

Traditional bacterial virulence assays involve prolonged exposure of bacteria over the course of several hours to host cells. During this time, bacteria can undergo changes in the physiology due to the exposure to host growth environment and the presence of the host cells. We developed an assay to rapidly measure the virulence state of bacteria that minimize the extent to which bacteria grow in the presence of host cells. Bacteria and amoebae are mixed together and immobilized on a single imaging plane using an agar pad. The procedure uses single-cell fluorescence imaging with calcein-acetoxymethyl ester (calcein-AM) as an indicator of host cell health. The fluorescence of host cells is analyzed after 1 h of exposure of host cells to bacteria using epifluorescence microscopy. Image analysis software is used to compute a host killing index. This method has been used to measure virulence within planktonic and surface-attached Pseudomonas aeruginosa sub-populations during the initial stage of biofilm formation and may be adapted to other bacteria and other stages of biofilm growth. This protocol provides a rapid and robust method of measuring virulence and avoids many of the complexities associated with the growth and maintenance of mammalian cell lines. Virulence phenotypes measured here using amoebae have also been validated using mouse macrophages. In particular, this assay was used to establish that surface attachment upregulates virulence in P. aeruginosa.


Subject(s)
Amoeba/microbiology , Bacteria/metabolism , Biological Assay/methods , Pseudomonas aeruginosa/virology , Virulence Factors/metabolism
18.
Proc Natl Acad Sci U S A ; 115(21): 5438-5443, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29735692

ABSTRACT

Bacteria colonize environments that contain networks of moving fluids, including digestive pathways, blood vasculature in animals, and the xylem and phloem networks in plants. In these flow networks, bacteria form distinct biofilm structures that have an important role in pathogenesis. The physical mechanisms that determine the spatial organization of bacteria in flow are not understood. Here, we show that the bacterium P. aeruginosa colonizes flow networks using a cyclical process that consists of surface attachment, upstream movement, detachment, movement with the bulk flow, and surface reattachment. This process, which we have termed dynamic switching, distributes bacterial subpopulations upstream and downstream in flow through two phases: movement on surfaces and cellular movement via the bulk. The model equations that describe dynamic switching are identical to those that describe dynamic instability, a process that enables microtubules in eukaryotic cells to search space efficiently to capture chromosomes. Our results show that dynamic switching enables bacteria to explore flow networks efficiently, which maximizes dispersal and colonization and establishes the organizational structure of biofilms. A number of eukaryotic and mammalian cells also exhibit movement in two phases in flow, which suggests that dynamic switching is a modality that enables efficient dispersal for a broad range of cell types.


Subject(s)
Bacterial Physiological Phenomena , Biofilms/growth & development , Pseudomonas aeruginosa/growth & development , Hydrodynamics , Pseudomonas aeruginosa/physiology , Water Movements
19.
Biomed Opt Express ; 8(9): 3918-3937, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-29026679

ABSTRACT

Previously described selective plane illumination microscopy techniques typically offset ease of use and sample handling for maximum imaging performance or vice versa. Also, to reduce cost and complexity while maximizing flexibility, it is highly desirable to implement light sheet microscopy such that it can be added to a standard research microscope instead of setting up a dedicated system. We devised a new approach termed sideSPIM that provides uncompromised imaging performance and easy sample handling while, at the same time, offering new applications of plane illumination towards fluidics and high throughput 3D imaging of multiple specimen. Based on an inverted epifluorescence microscope, all of the previous functionality is maintained and modifications to the existing system are kept to a minimum. At the same time, our implementation is able to take full advantage of the speed of the employed sCMOS camera and piezo stage to record data at rates of up to 5 stacks/s. Additionally, sample handling is compatible with established methods and switching magnification to change the field of view from single cells to whole organisms does not require labor intensive adjustments of the system.

20.
Cell ; 161(5): 988-997, 2015 May 21.
Article in English | MEDLINE | ID: mdl-26000479

ABSTRACT

In the wild, bacteria are predominantly associated with surfaces as opposed to existing as free-swimming, isolated organisms. They are thus subject to surface-specific mechanics, including hydrodynamic forces, adhesive forces, the rheology of their surroundings, and transport rules that define their encounters with nutrients and signaling molecules. Here, we highlight the effects of mechanics on bacterial behaviors on surfaces at multiple length scales, from single bacteria to the development of multicellular bacterial communities such as biofilms.


Subject(s)
Escherichia coli/physiology , Pseudomonas aeruginosa/physiology , Bacterial Adhesion , Biofilms , Biological Transport , Biomechanical Phenomena , Escherichia coli/cytology , Locomotion , Pseudomonas aeruginosa/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...