Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 13(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38790652

ABSTRACT

Brain ischemia is one of the major causes of chronic disability and death worldwide. It is related to insufficient blood supply to cerebral tissue, which induces irreversible or reversible intracellular effects depending on the time and intensity of the ischemic event. Indeed, neuronal function may be restored in some conditions, such as transient ischemic attack (TIA), which may be responsible for protecting against a subsequent lethal ischemic insult. It is well known that the brain requires high levels of oxygen and glucose to ensure cellular metabolism and energy production and that damage caused by oxygen impairment is tightly related to the brain's low antioxidant capacity. Oxygen is a key player in mitochondrial oxidative phosphorylation (OXPHOS), during which reactive oxygen species (ROS) synthesis can occur as a physiological side-product of the process. Indeed, besides producing adenosine triphosphate (ATP) under normal physiological conditions, mitochondria are the primary source of ROS within the cell. This is because, in 0.2-2% of cases, the escape of electrons from complex I (NADPH-dehydrogenase) and III of the electron transport chain occurring in mitochondria during ATP synthesis leads to the production of the superoxide radical anion (O2•-), which exerts detrimental intracellular effects owing to its high molecular instability. Along with ROS, reactive nitrosative species (RNS) also contribute to the production of free radicals. When the accumulation of ROS and RNS occurs, it can cause membrane lipid peroxidation and DNA damage. Here, we describe the intracellular pathways activated in brain tissue after a lethal/sub lethal ischemic event like stroke or ischemic tolerance, respectively, highlighting the important role played by oxidative stress and mitochondrial dysfunction in the onset of the two different ischemic conditions.

2.
Ecotoxicol Environ Saf ; 273: 116104, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38377779

ABSTRACT

Increased risk of neurodegenerative diseases has been envisaged for air pollution exposure. On the other hand, environmental risk factors, including air pollution, have been suggested for Amyotrophic Lateral Sclerosis (ALS) pathomechanism. Therefore, the neurotoxicity of ultrafine particulate matter (PM0.1) (PM < 0.1 µm size) and its sub-20 nm nanoparticle fraction (NP20) has been investigated in motor neuronal-like cells and primary cortical neurons, mainly affected in ALS. The present data showed that PM0.1 and NP20 exposure induced endoplasmic reticulum (ER) stress, as occurred in cortex and spinal cord of ALS mice carrying G93A mutation in SOD1 gene. Furthermore, NSC-34 motor neuronal-like cells exposed to PM0.1 and NP20 shared the same proteomic profile on some apoptotic factors with motor neurons treated with the L-BMAA, a neurotoxin inducing Amyotrophic Lateral Sclerosis/Parkinson-Dementia Complex (ALS/PDC). Of note ER stress induced by PM0.1 and NP20 in motor neurons was associated to pathological changes in ER morphology and dramatic reduction of organellar Ca2+ level through the dysregulation of the Ca2+-pumps SERCA2 and SERCA3, the Ca2+-sensor STIM1, and the Ca2+-release channels RyR3 and IP3R3. Furthermore, the mechanism deputed to ER Ca2+ refilling (e.g. the so called store operated calcium entry-SOCE) and the relative currents ICRAC were also altered by PM0.1 and NP20 exposure. Additionally, these carbonaceous particles caused the exacerbation of L-BMAA-induced ER stress and Caspase-9 activation. In conclusion, this study shows that PM0.1 and NP20 induced the aberrant expression of ER proteins leading to dysmorphic ER, organellar Ca2+ dysfunction, ER stress and neurotoxicity, providing putative correlations with the neurodegenerative process occurring in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Particulate Matter , Animals , Mice , Amyotrophic Lateral Sclerosis/chemically induced , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Endoplasmic Reticulum/metabolism , Motor Neurons/metabolism , Proteomics , Primary Cell Culture , Particulate Matter/adverse effects , Endoplasmic Reticulum Stress , Calcium/metabolism , Disease Models, Animal
3.
Mol Ther Nucleic Acids ; 35(1): 102131, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38379726

ABSTRACT

MicroRNA (miRNA), by post-transcriptionally regulating the expression of genes involved in stroke response, represents important effectors in stroke pathophysiology. Recently, the 103/107 miRNA family emerged as a possible therapeutic target in stroke, as it controls the expression of sodium calcium exchanger 1, a plasma membrane transporter that plays a fundamental role in stroke pathophysiology. Although the neuroprotective properties of this and other miRNAs are promising, several pharmacokinetic drawbacks remain to be faced for the development of a translatable therapy based on small RNAs in CNS diseases. In the present study, to overcome these limitations, the anti-miRNA103/107 was encapsulated in specific preparations of lipid nanoparticles (LNPs), and their effectiveness was evaluated both in an in vitro model of hypoxia represented by primary neuronal cortical cultures exposed to oxygen and glucose deprivation followed by reoxygenation, and in an in vivo model of stroke obtained in rats exposed to transient occlusion of the middle cerebral artery. The results of the present study demonstrated that the encapsulation of anti-miRNA103/107 in transferrin-conjugated PEG-stabilized LNPs allowed the blood-brain barrier crossing and significantly reduced brain ischemic damage. The present achievements pave the way for the exploitation of a systemic intravenous miRNA delivery strategy in stroke therapy.

5.
Biomed Pharmacother ; 168: 115745, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37871561

ABSTRACT

Amyloid ß 1-42 (Aß1-42) protein aggregation is considered one of the main triggers of Alzheimer's disease (AD). In this study, we examined the in vitro anti-amyloidogenic activity of the isoindolinone derivative 3-(3-oxoisoindolin-1-yl)pentane-2,4-dione (ISOAC1) and its neuroprotective potential against the Aß1-42 toxicity. By performing the Thioflavin T fluorescence assay, Western blotting analyses, and Circular Dichroism experiments, we found that ISOAC1 was able to reduce the Aß1-42 aggregation and conformational transition towards ß-sheet structures. Interestingly, in silico studies revealed that ISOAC1 was able to bind to both the monomer and a pentameric protofibril of Aß1-42, establishing a hydrophobic interaction with the PHE19 residue of the Aß1-42 KLVFF motif. In vitro analyses on primary cortical neurons showed that ISOAC1 counteracted the increase of intracellular Ca2+ levels and decreased the Aß1-42-induced toxicity, in terms of mitochondrial activity reduction and increase of reactive oxygen species production. In addition, confocal microscopy analyses showed that ISOAC1 was able to reduce the Aß1-42 intraneuronal accumulation. Collectively, our results clearly show that ISOAC1 exerts a neuroprotective effect by reducing the Aß1-42 aggregation and toxicity, hence emerging as a promising compound for the development of new Aß-targeting therapeutic strategies for AD treatment.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Pentanes , Humans , Alzheimer Disease/metabolism , Pentanes/pharmacology , Peptide Fragments/toxicity , Protein Aggregates
6.
Neurobiol Dis ; 178: 106020, 2023 03.
Article in English | MEDLINE | ID: mdl-36708960

ABSTRACT

Lysosomal function and organellar Ca2+ homeostasis become dysfunctional in Stroke causing disturbances in autophagy, the major process for the degradation of abnormal protein aggregates and dysfunctional organelles. However, the role of autophagy in Stroke is controversial since excessive or prolonged autophagy activation exacerbates ischemic brain injury. Of note, glutamate evokes NAADP-dependent Ca2+ release via lysosomal TPC2 channels thus controlling basal autophagy. Considering the massive release of excitotoxins in Stroke, autophagic flux becomes uncontrolled with abnormal formation of autophagosomes causing, in turn, disruption of excitotoxins clearance and neurodegeneration. Here, a fine regulation of autophagy via a proper pharmacological modulation of lysosomal TPC2 channel has been tested in preclinical Stroke models. Primary cortical neurons were subjected to oxygen and glucose deprivation+reoxygenation to reproduce in vitro brain ischemia. Focal brain ischemia was induced in rats by transient middle cerebral artery occlusion (tMCAO). Under these conditions, TPC2 protein expression as well as autophagy and endoplasmic reticulum (ER) stress markers were studied by Western blotting, while TPC2 localization and activity were measured by immunocytochemistry and single-cell video-imaging, respectively. TPC2 protein expression and immunosignal were highly modulated in primary cortical neurons exposed to extreme hypoxic conditions causing dysfunction in organellar Ca2+ homeostasis, ER stress and autophagy-induced cell death. TPC2 knocking down and pharmacological inhibition by Ned-19 during hypoxia induced neuroprotection. The effect of Ned-19 was reversed by the permeable form of TPC2 endogenous agonist, NAADP-AM. Of note, Ned-19 prevented ER stress, as measured by GRP78 (78 kDa glucose-regulated protein) protein reduction and caspase 9 downregulation. In this way Ned-19 restored organellar Ca2+ level. Interestingly, Ned-19 reduced the infarct volume and neurological deficits in rats subjected to tMCAO and prevented hypoxia-induced cell death by blocking autophagic flux. Collectively, the pharmacological inhibition of TPC2 lysosomal channel by Ned-19 protects from focal ischemia by hampering a hyperfunctional autophagy.


Subject(s)
Brain Ischemia , Stroke , Animals , Rats , Autophagy , Brain Ischemia/metabolism , Endoplasmic Reticulum Chaperone BiP , Hypoxia/metabolism , Infarction, Middle Cerebral Artery/metabolism , Lysosomes/metabolism , Neuroprotection , Neurotoxins , Stroke/drug therapy , Stroke/metabolism
7.
Cells ; 11(18)2022 09 09.
Article in English | MEDLINE | ID: mdl-36139395

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the progressive deterioration of cognitive functions. Cortical and hippocampal hyperexcitability intervenes in the pathological derangement of brain activity leading to cognitive decline. As key regulators of neuronal excitability, the voltage-gated K+ channels (KV) might play a crucial role in the AD pathophysiology. Among them, the KV2.1 channel, the main α subunit mediating the delayed rectifier K+ currents (IDR) and controlling the intrinsic excitability of pyramidal neurons, has been poorly examined in AD. In the present study, we investigated the KV2.1 protein expression and activity in hippocampal neurons from the Tg2576 mouse, a widely used transgenic model of AD. To this aim we performed whole-cell patch-clamp recordings, Western blotting, and immunofluorescence analyses. Our Western blotting results reveal that KV2.1 was overexpressed in the hippocampus of 3-month-old Tg2576 mice and in primary hippocampal neurons from Tg2576 mouse embryos compared with the WT counterparts. Electrophysiological experiments unveiled that the whole IDR were reduced in the Tg2576 primary neurons compared with the WT neurons, and that this reduction was due to the loss of the KV2.1 current component. Moreover, we found that the reduction of the KV2.1-mediated currents was due to increased channel clustering, and that glutamate, a stimulus inducing KV2.1 declustering, was able to restore the IDR to levels comparable to those of the WT neurons. These findings add new information about the dysregulation of ionic homeostasis in the Tg2576 AD mouse model and identify KV2.1 as a possible player in the AD-related alterations of neuronal excitability.


Subject(s)
Alzheimer Disease , Shab Potassium Channels , Alzheimer Disease/metabolism , Animals , Cells, Cultured , Cluster Analysis , Glutamic Acid/metabolism , Hippocampus/metabolism , Mice , Neurons/metabolism , Potassium/metabolism , Shab Potassium Channels/metabolism
8.
Cells ; 11(18)2022 09 17.
Article in English | MEDLINE | ID: mdl-36139485

ABSTRACT

The altered crosstalk between mitochondrial dysfunction, intracellular Ca2+ homeostasis, and oxidative stress has a central role in the dopaminergic neurodegeneration. In the present study, we investigated the hypothesis that pharmacological strategies able to improve mitochondrial functions might prevent neuronal dysfunction in in vitro models of Parkinson's disease. To this aim, the attention was focused on the amino acid ornithine due to its ability to cross the blood-brain barrier, to selectively reach and penetrate the mitochondria through the ornithine transporter 1, and to control mitochondrial function. To pursue this issue, experiments were performed in human neuroblastoma cells SH-SY5Y treated with rotenone and 6-hydroxydopamine to investigate the pharmacological profile of the compound L-Ornithine-L-Aspartate (LOLA) as a new potential therapeutic strategy to prevent dopaminergic neurons' death. In these models, confocal microscopy experiments with fluorescent dyes measuring mitochondrial calcium content, mitochondrial membrane potential, and mitochondrial ROS production, demonstrated that LOLA improved mitochondrial functions. Moreover, by increasing NCXs expression and activity, LOLA also reduced cytosolic [Ca2+] thanks to its ability to modulate NO production. Collectively, these results indicate that LOLA, by interfering with those mitochondrial mechanisms related to ROS and RNS production, promotes mitochondrial functional recovery, thus confirming the tight relationship existing between cytosolic ionic homeostasis and cellular metabolism depending on the type of insult applied.


Subject(s)
Neuroblastoma , Parkinson Disease , Aspartic Acid , Calcium/metabolism , Dipeptides , Dopaminergic Neurons/metabolism , Fluorescent Dyes/metabolism , Homeostasis , Humans , Mitochondria/metabolism , Neuroblastoma/metabolism , Ornithine/metabolism , Oxidopamine/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Reactive Oxygen Species/metabolism , Rotenone
9.
J Transl Med ; 20(1): 290, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35761360

ABSTRACT

BACKGROUND: Triple negative breast cancer (TNBC) is an aggressive disease characterized by high risk of relapse and development of resistance to different chemotherapy agents. Several targeted therapies have been investigated in TNBC with modest results in clinical trials. Among these, PI3K/AKT inhibitors have been evaluated in addition to standard therapies, yielding conflicting results and making attempts on elucidating inherent mechanisms of resistance of great interest. Increasing evidences suggest that PI3K/AKT inhibitors can induce autophagy in different cancers. Autophagy represents a supposed mechanism of drug-resistance in aggressive tumors, like TNBC. We, therefore, investigated if two PI3K/AKT inhibitors, ipatasertib and taselisib, could induce autophagy in breast cancer models, and whether chloroquine (CQ), a well known autophagy inhibitor, could potentiate ipatasertib and taselisib anti-cancer effect in combination with conventional chemotherapy. METHODS: The induction of autophagy after ipatasertib and taselisib treatment was evaluated in MDAMB231, MDAM468, MCF7, SKBR3 and MDAB361 breast cancer cell lines by assaying LC3-I conversion to LC3-II through immunoblotting and immunofluorescence. Other autophagy-markers as p62/SQSTM1 and ATG5 were evaluated by immunoblotting. Synergistic antiproliferative effect of double and triple combinations of ipatasertib/taselisib plus CQ and/or paclitaxel were evaluated by SRB assay and clonogenic assay. Anti-apoptotic effect of double combination of ipatasertib/taselisib plus CQ was evaluated by increased cleaved-PARP by immunoblot and by Annexin V- flow cytometric analysis. In vivo experiments were performed on xenograft model of MDAMB231 in NOD/SCID mice. RESULTS: Our results suggested that ipatasertib and taselisib induce increased autophagy signaling in different breast cancer models. This effect was particularly evident in PI3K/AKT resistant TNBC cells, where the inhibition of autophagy by CQ potentiates the therapeutic effect of PI3K/AKT inhibitors in vitro and in vivo TNBC models, synergizing with taxane-based chemotherapy. CONCLUSION: These data suggest that inhibition of authophagy with CQ could overcome mechanism of drug resistance to PI3K/AKT inhibitors plus paclitaxel in TNBC making the evaluation of such combinations in clinical trials warranted.


Subject(s)
Chloroquine , Drug Resistance, Neoplasm , Phosphoinositide-3 Kinase Inhibitors , Triple Negative Breast Neoplasms , Animals , Autophagy , Cell Line, Tumor , Cell Proliferation , Chloroquine/pharmacology , Chloroquine/therapeutic use , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Triple Negative Breast Neoplasms/drug therapy
10.
Cell Calcium ; 101: 102525, 2022 01.
Article in English | MEDLINE | ID: mdl-34995919

ABSTRACT

Excessive calcium (Ca2+) release from the endoplasmic reticulum (ER) represents an important hallmark of several neurodegenerative diseases. ER is recharged from Ca2+ through the so-called Store-Operated Calcium Entry (SOCE) thus providing Ca2+ signals to regulate critical cell functions. Single transmembrane-spanning domain protein stromal interacting molecule 1 (STIM1), mainly residing in the ER, and plasmalemmal channel Orai1 represent the SOCE key components at neuronal level. However, many other proteins participate to ER Ca2+ refilling including the Na+/Ca2+ exchanger isoform 1 (NCX1), whose regulation by ER remains unknown. In this study, we tested the possibility that neuronal NCX1 may take part to SOCE through the interaction with STIM1. In rat primary cortical neurons and in nerve growth factor (NGF)-differentiated PC12 cells NCX1 knocking down by siRNA strategy significantly prevented SOCE as well as SOCE pharmacological inhibition by SKF-96365 and 2-APB. A significant reduction of SOCE was recorded also in synaptosomes from ncx1-/- mice brain compared with ncx1+/+ mice. Double labeling confocal experiments showed a large co-localization between NCX1 and STIM1 in rat primary cortical neurons. Accordingly, NCX1 and STIM1 co-immunoprecipitated and functionally interacted each other during ischemic preconditioning, a phenomenon inducing ischemic tolerance. However, STIM1 knocking down reduced NCX1 activity recorded by either patch-clamp electrophysiology or Fura-2 single-cell microfluorimetry. Furthermore, canonical transient receptor potential channel 6 (TRPC6) was identified as the mechanism mediating local increase of sodium (Na+) useful to drive NCX1 reverse mode and, therefore, NCX1-mediated Ca2+ refilling. In fact, TRPC6 not only interacted with STIM1, as shown by the co-localization and co-immunoprecipitation with the ER Ca2+ sensor, but it also mediated 1,3-Benzenedicarboxylic acid, 4,4'-[1,4,10-trioxa-7,13-diazacyclopentadecane-7,13-diylbis(5-methoxy-6,12-benzofurandiyl)]bis-, tetrakis[(acetyloxy)methyl] ester (SBFI)-monitored Na+ increase elicited by thapsigargin in primary cortical neurons. Accordingly, efficient TRPC6 knockdown prevented thapsigargin-induced intracellular Na+ elevation and SOCE. Collectively, we identify NCX1 as a new partner of STIM1 in mediating SOCE, whose activation in the reverse mode may be facilitated by the local increase of Na+ concentration due to the interaction between STIM1 and TRPC6 in primary cortical neurons.


Subject(s)
Calcium , Neurons , Sodium-Calcium Exchanger , Stromal Interaction Molecule 1 , TRPC6 Cation Channel , Animals , Calcium/metabolism , Calcium Signaling , Membrane Proteins/metabolism , Mice , Neurons/metabolism , ORAI1 Protein/genetics , Protein Isoforms/genetics , Rats , Sodium-Calcium Exchanger/genetics , Stromal Interaction Molecule 1/genetics
11.
Biochem Pharmacol ; 197: 114931, 2022 03.
Article in English | MEDLINE | ID: mdl-35085542

ABSTRACT

Mitochondrial K+ permeability regulates neuronal apoptosis, energy metabolism, autophagy, and protection against ischemia-reperfusion injury. Kv7.4 channels have been recently shown to regulate K+ permeability in cardiac mitochondria and exert cardioprotective effects. Here, the possible expression and functional role of Kv7.4 channels in regulating membrane potential, radical oxygen species (ROS) production, and Ca2+ uptake in neuronal mitochondria was investigated in both clonal (F11 cells) and native brain neurons. In coupled mitochondria isolated from F11 cells, K+-dependent changes of mitochondrial membrane potential (ΔΨ) were unaffected by the selective mitoBKCa channel blocker iberiotoxin and only partially inhibited by the mitoKATP blockers glyburide or ATP. Interestingly, K+-dependent ΔΨ decrease was significantly reduced by the Kv7 blocker XE991 and enhanced by the Kv7 activator retigabine. Among Kv7s, western blot experiments showed the expression of only Kv7.4 subunits in F11 mitochondrial fractions; immunocytochemistry experiments showed a strong overlap between the Kv7.4 fluorescent signal and that of the mitochondrial marker Mitotracker. Silencing of Kv7.4 expression significantly suppressed retigabine-dependent decrease in ΔΨ in intact F11 cells. Expression of Kv7.4 subunits was also detected by western blot in isolated mitochondria from total mouse brain and by immunofluorescence in mouse primary cortical neurons. Pharmacological experiments revealed a relevant functional role for Kv7.4 channels in regulating membrane potential and Ca2+ uptake in isolated neuronal mitochondria, as well as ΔΨ and ROS production in intact cortical neurons. In conclusion, these findings provide the first experimental evidence for the expression of Kv7.4 channels and their contribution in regulating K+ permeability of neuronal mitochondria.


Subject(s)
KCNQ Potassium Channels/biosynthesis , Membrane Potential, Mitochondrial/physiology , Mitochondria/metabolism , Neurons/metabolism , Potassium/metabolism , Animals , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Female , Glyburide/pharmacology , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Neurons/drug effects , Permeability/drug effects , Pregnancy
12.
Int J Mol Sci ; 22(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34360942

ABSTRACT

The exact mechanism underlying selective dopaminergic neurodegeneration is not completely understood. The complex interplay among toxic alpha-synuclein aggregates, oxidative stress, altered intracellular Ca2+-homeostasis, mitochondrial dysfunction and disruption of mitochondrial integrity is considered among the pathogenic mechanisms leading to dopaminergic neuronal loss. We herein investigated the molecular mechanisms leading to mitochondrial dysfunction and its relationship with activation of the neuroinflammatory process occurring in Parkinson's disease. To address these issues, experiments were performed in vitro and in vivo in mice carrying the human mutation of α-synuclein A53T under the prion murine promoter. In these models, the expression and activity of NCX isoforms, a family of important transporters regulating ionic homeostasis in mammalian cells working in a bidirectional way, were evaluated in neurons and glial cells. Mitochondrial function was monitored with confocal microscopy and fluorescent dyes to measure mitochondrial calcium content and mitochondrial membrane potential. Parallel experiments were performed in 4 and 16-month-old A53T-α-synuclein Tg mice to correlate the functional data obtained in vitro with mitochondrial dysfunction and neuroinflammation through biochemical analysis. The results obtained demonstrated: 1. in A53T mice mitochondrial dysfunction occurs early in midbrain and later in striatum; 2. mitochondrial dysfunction occurring in the midbrain is mediated by the impairment of NCX3 protein expression in neurons and astrocytes; 3. mitochondrial dysfunction occurring early in midbrain triggers neuroinflammation later into the striatum, thus contributing to PD progression during mice aging.


Subject(s)
Mesencephalon/metabolism , Mitochondria/metabolism , Parkinson Disease/metabolism , Sodium-Calcium Exchanger/metabolism , alpha-Synuclein/genetics , Animals , Astrocytes/metabolism , Calcium/metabolism , Cells, Cultured , Dopaminergic Neurons/metabolism , Mesencephalon/cytology , Mice , Mice, Inbred C57BL , Mutation, Missense , Parkinson Disease/genetics , Sodium-Calcium Exchanger/genetics , alpha-Synuclein/metabolism
13.
FASEB J ; 35(2): e21277, 2021 02.
Article in English | MEDLINE | ID: mdl-33484198

ABSTRACT

A robust activity of the lysosomal Ca2+ channel TRPML1 is sufficient to correct cellular defects in neurodegeneration. Importantly, lysosomes are refilled by the endoplasmic reticulum (ER). However, it is unclear how TRPML1 function could be modulated by the ER. Here, we deal with this issue in rat primary cortical neurons exposed to different oxygen conditions affecting neuronal survival. Under normoxic conditions, TRPML1: (1) showed a wide distribution within soma and along neuronal processes; (2) was stimulated by the synthetic agonist ML-SA1 and the analog of its endogenous modulator, PI(3,5)P2 diC8; (3) its knockdown by siRNA strategy produced an ER Ca2+ accumulation; (4) co-localized and co-immunoprecipitated with the ER-located Ca2+ sensor stromal interacting molecule 1 (STIM1). In cortical neurons lacking STIM1, ML-SA1 and PI(3,5)P2 diC8 failed to induce Ca2+ release and, more deeply, they induced a negligible Ca2+ passage through the channel in neurons transfected with the genetically encoded Ca2+ indicator GCaMP3-ML1. Moreover, TRPML1/STIM1 interplay changed at low-oxygen conditions: both proteins were downregulated during the ischemic preconditioning (IPC) while during IPC followed by 1 hour of normoxia, at which STIM1 is upregulated, TRPML1 protein was reduced. However, during oxygen and glucose deprivation (OGD) followed by reoxygenation, TRPML1 and STIM1 proteins peaked at 8 hours of reoxygenation, when the proteins were co-immunoprecipitated and reactive oxygen species (ROS) hyperproduction was measured in cortical neurons. This may lead to a persistent TRPML1 Ca2+ release and lysosomal Ca2+ loss. Collectively, we showed a new modulation exerted by STIM1 on TRPML1 activity that may differently intervene during hypoxia to regulate organellar Ca2+ homeostasis.


Subject(s)
Calcium/metabolism , Cell Hypoxia , Lysosomes/metabolism , Neurons/metabolism , Oxygen/metabolism , Stromal Interaction Molecule 1/metabolism , Transient Receptor Potential Channels/metabolism , Animals , Cells, Cultured , Cerebral Cortex/cytology , Ischemic Preconditioning/methods , Rats , Rats, Wistar
14.
Front Aging Neurosci ; 12: 118, 2020.
Article in English | MEDLINE | ID: mdl-32477098

ABSTRACT

Twelve-month-old male mice expressing the human A53T variant of α-synuclein (A53T) develop dopamine neuron degeneration, neuroinflammation, and motor deficits, along with dysfunctions of the mitochondrial Na+-Ca2+ exchanger (NCX) isoforms 1 (NCX1) and 3 (NCX3) in the nigrostriatal system. Since gender is thought to play a role in the etiology of Parkinson's disease (PD), we characterized neurochemical and behavioral alterations in 12-month-old female A53T transgenic mice. We investigated the presence of dopaminergic degeneration, astrogliosis and microgliosis using immunohistochemistry for tyrosine hydroxylase (TH), glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule-1 (IBA-1) in both the substantia nigra pars compacta (SNc) and striatum. In the same regions, we also evaluated the co-localization of NCX1 in cells positive for IBA-1 and the co-localization of NCX3 in TH-positive neurons and fibers. Furthermore, in both male and female mice, we performed motor (beam walking and pole tests) and memory [novel object recognition (NOR) and spontaneous alternation] tasks, together with tests to evaluate peripheral deficits (olfactory and stool collection tests). Female A53T transgenic mice displayed degeneration of nigral dopaminergic neurons, but neither microgliosis nor astrogliosis in the SNc and striatum. Moreover, female A53T transgenic mice displayed co-localization between NCX1 and IBA-1 positive cells in the striatum but not SNc, whereas NCX3 did not co-localize with either TH-positive terminals or neuronal bodies in the nigrostriatal system. Furthermore, female A53T transgenic mice showed increased crossing time in the beam walking test, but no impairments in the pole or memory tests, and in tests that evaluated peripheral deficits, whereas male A53T transgenic mice displayed motor, memory and peripheral deficits. Immunohistochemical and behavioral results obtained here in the female mice differ from those previously observed in males, and suggest a dissimilar influence of NCX1 and NCX3 on dopaminergic function in female and male A53T transgenic mice, strengthening the validity of these mice as a model for studying the etiological factors of PD.

15.
Front Aging Neurosci ; 12: 100, 2020.
Article in English | MEDLINE | ID: mdl-32372945

ABSTRACT

The loss of dopaminergic (DA) neurons in the substantia nigra leads to a progressive, long-term decline of movement and other non-motor deficits. The symptoms of Parkinson's disease (PD) often appear later in the course of the disease, when most of the functional dopaminergic neurons have been lost. The late onset of the disease, the severity of the illness, and its impact on the global health system demand earlier diagnosis and better targeted therapy. PD etiology and pathogenesis are largely unknown. There are mutations in genes that have been linked to PD and, from these complex phenotypes, mitochondrial dysfunction emerged as central in the pathogenesis and evolution of PD. In fact, several PD-associated genes negatively impact on mitochondria physiology, supporting the notion that dysregulation of mitochondrial signaling and homeostasis is pathogenically relevant. Derangement of mitochondrial homeostatic controls can lead to oxidative stress and neuronal cell death. Restoring deranged signaling cascades to and from mitochondria in PD neurons may then represent a viable opportunity to reset energy metabolism and delay the death of dopaminergic neurons. Here, we will highlight the relevance of dysfunctional mitochondrial homeostasis and signaling in PD, the molecular mechanisms involved, and potential therapeutic approaches to restore mitochondrial activities in damaged neurons.

16.
Cell Calcium ; 87: 102193, 2020 05.
Article in English | MEDLINE | ID: mdl-32193001

ABSTRACT

Mitochondria are highly dynamic organelles extremely important for cell survival. Their structure resembles that of prokaryotic cells since they are composed with two membranes, the inner (IMM) and the outer mitochondrial membrane (OMM) delimitating the intermembrane space (IMS) and the matrix which contains mitochondrial DNA (mtDNA). This structure is strictly related to mitochondrial function since they produce the most of the cellular ATP through the oxidative phosphorylation which generate the electrochemical gradient at the two sides of the inner mitochondrial membrane an essential requirement for mitochondrial function. Cells of highly metabolic demand like those composing muscle, liver and brain, are particularly dependent on mitochondria for their activities. Mitochondria undergo to continual changes in morphology since, they fuse and divide, branch and fragment, swell and extend. Importantly, they move throughout the cell to deliver ATP and other metabolites where they are mostly required. Along with the capability to control energy metabolism, mitochondria play a critical role in the regulation of many physiological processes such as programmed cell death, autophagy, redox signalling, and stem cells reprogramming. All these phenomena are regulated by Ca2+ ions within this organelle. This review will discuss the molecular mechanisms regulating mitochondrial calcium cycling in physiological and pathological conditions with particular regard to their impact on mitochondrial dynamics and function during ischemia. Particular emphasis will be devoted to the role played by NCX3 and AKAP121 as new molecular targets for mitochondrial function and dysfunction.


Subject(s)
A Kinase Anchor Proteins/metabolism , Calcium/metabolism , Cell Nucleus/metabolism , Mitochondria/metabolism , Neurons/metabolism , Neurons/pathology , Sodium-Calcium Exchanger/metabolism , Animals , Cell Hypoxia , Humans
17.
Cell Commun Signal ; 18(1): 42, 2020 03 12.
Article in English | MEDLINE | ID: mdl-32164721

ABSTRACT

BACKGROUND: Na+/Ca2+ exchanger isoform 3 (NCX3) regulates mitochondrial Ca2+ handling through the outer mitochondrial membrane (OMM) and promotes neuronal survival during oxygen and glucose deprivation (OGD). Conversely, Seven In-Absentia Homolog 2 (Siah2), an E3-ubiquitin ligase, which is activated under hypoxic conditions, causes proteolysis of mitochondrial and cellular proteins. In the present study, we investigated whether siah2, upon its activation during hypoxia, interacts with NCX3 and whether such interaction could regulate the molecular events underlying changes in mitochondrial morphology, i.e., fusion and fission, and function, in neurons exposed to anoxia and anoxia/reoxygenation. METHODS: To answer these questions, after exposing cortical neurons from siah2 KO mice (siah2 -/-) to OGD and OGD/Reoxygenation, we monitored the changes in mitochondrial fusion and fission protein expression, mitochondrial membrane potential (ΔΨm), and mitochondrial calcium concentration ([Ca2+]m) by using specific fluorescent probes, confocal microscopy, and Western Blot analysis. RESULTS: As opposed to congenic wild-type neurons, in neurons from siah2-/- mice exposed to OGD, form factor (FF), an index of the complexity and branching aspect of mitochondria, and aspect ratio (AR), an index reflecting the "length-to-width ratio" of mitochondria, maintained low expression. In KO siah2 neurons exposed to OGD, downregulation of mitofusin 1 (Mfn1), a protein involved in mitochondrial fusion and upregulation of dynamin-related protein 1 (Drp1), a protein involved in the mitochondrial fission, were prevented. Furthermore, under OGD conditions, whereas [Ca2+]m was reduced, ΔΨm, mitochondrial oxidative capacity and ATP production were improved. Interestingly, our immunoprecipitation assay revealed that Siah2 interacted with NCX3. Indeed, siah2 knock-out prevented NCX3 degradation in neurons exposed to OGD. Finally, when siah2-/- neurons were exposed to OGD/reoxygenation, FF, AR, and Mfn1 expression increased, and mitochondrial function improved compared to siah2+/+ neurons. CONCLUSIONS: Collectively, these findings indicate that hypoxia-induced SIAH2-E3 ligase activation influences mitochondrial fusion and fission, as well as function, by inducing NCX3 degradation. Video Abstract.


Subject(s)
Hypoxia-Ischemia, Brain , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Neurons , Sodium-Calcium Exchanger/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Cell Hypoxia , Cells, Cultured , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Membrane Potential, Mitochondrial , Mice , Mice, Knockout , Mitochondrial Dynamics , Neurons/metabolism , Neurons/pathology , Primary Cell Culture
18.
Sci Rep ; 9(1): 10743, 2019 07 24.
Article in English | MEDLINE | ID: mdl-31341250

ABSTRACT

Cellular clearance mechanisms including the autophagy-lysosome pathway are impaired in amyotrophic lateral sclerosis (ALS). One of the most important proteins involved in the regulation of autophagy is the lysosomal Ca2+ channel Mucolipin TRP channel 1 (TRPML1). Therefore, we investigated the role of TRPML1 in a neuronal model of ALS/Parkinson-dementia complex reproduced by the exposure of motor neurons to the cyanobacterial neurotoxin beta-methylamino-L-alanine (L-BMAA). Under these conditions, L-BMAA induces a dysfunction of the endoplasmic reticulum (ER) leading to ER stress and cell death. Therefore we hypothesized a dysfunctional coupling between lysosomes and ER in L-BMAA-treated motor neurons. Here, we showed that in motor neuronal cells TRPML1 as well as the lysosomal protein LAMP1 co-localized with ER. In addition, TRPML1 co-immunoprecipitated with the ER Ca2+ sensor STIM1. Functionally, the TRPML1 agonist ML-SA1 induced lysosomal Ca2+ release in a dose-dependent way in motor neuronal cells. The SERCA inhibitor thapsigargin increased the fluorescent signal associated with lysosomal Ca2+ efflux in the cells transfected with the genetically encoded Ca2+ indicator GCaMP3-ML1, thus suggesting an interplay between the two organelles. Moreover, chronic exposure to L-BMAA reduced TRPML1 protein expression and produced an impairment of both lysosomal and ER Ca2+ homeostasis in primary motor neurons. Interestingly, the preincubation of ML-SA1, by an early activation of AMPK and beclin 1, rescued motor neurons from L-BMAA-induced cell death and reduced the expression of the ER stress marker GRP78. Finally, ML-SA1 reduced the accumulation of the autophagy-related proteins p62/SQSTM1 and LC3-II in L-BMAA-treated motor neurons. Collectively, we propose that the pharmacological stimulation of TRPML1 can rescue motor neurons from L-BMAA-induced toxicity by boosting autophagy and reducing ER stress.


Subject(s)
Amino Acids, Diamino/pharmacology , Autophagy/drug effects , Motor Neurons/drug effects , Transient Receptor Potential Channels/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , Calcium/metabolism , Cells, Cultured , Cyanobacteria Toxins , Disease Models, Animal , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Chaperone BiP , Hybrid Cells , Lysosomes/drug effects , Lysosomes/metabolism , Mice , Motor Neurons/metabolism , Neuroprotective Agents/pharmacology , Phthalimides/pharmacology , Quinolines/pharmacology , Rats , Rats, Wistar , Transient Receptor Potential Channels/drug effects
19.
Cell Death Dis ; 9(7): 725, 2018 06 25.
Article in English | MEDLINE | ID: mdl-29941946

ABSTRACT

Na+-Ca2+ exchanger (NCX) isoforms constitute the major cellular Ca2+ extruding system in neurons and microglia. We herein investigated the role of NCX isoforms in the pathophysiology of Parkinson's disease (PD). Their expression and activity were evaluated in neurons and glia of mice expressing the human A53T variant of α-synuclein (A53T mice), an animal model mimicking a familial form of PD. Western blotting revealed that NCX3 expression in the midbrain of 12-month old A53T mice was lower than that of wild type (WT). Conversely, NCX1 expression increased in the striatum. Immunohistochemical studies showed that glial fibrillary acidic protein (GFAP)-positive astroglial cells significantly increased in the substantia nigra pars compacta (SNc) and in the striatum. However, the number and the density of tyrosine hydroxylase (TH)-positive neurons decreased in both brain regions. Interestingly, ionized calcium binding adaptor molecule 1 (IBA-1)-positive microglial cells increased only in the striatum of A53T mice compared to WT. Double immunostaining studies showed that in A53T mice, NCX1 was exclusively co-expressed in IBA-1-positive microglial cells in the striatum, whereas NCX3 was solely co-expressed in TH-positive neurons in SNc. Beam walking and pole tests revealed a reduction in motor performance for A53T mice compared to WT. In vitro experiments in midbrain neurons from A53T and WT mice demonstrated a reduction in NCX3 expression, which was accompanied by mitochondrial overload of Ca2+ ions, monitored with confocal microscopy by X-Rhod-1 fluorescent dye. Collectively, in vivo and in vitro findings suggest that the reduction in NCX3 expression and activity in A53T neurons from midbrain may cause mitochondrial dysfunction and neuronal death in this brain area, whereas NCX1 overexpression in microglial cells may promote their proliferation in the striatum.


Subject(s)
Inflammation/metabolism , Nerve Degeneration/metabolism , Parkinson Disease/metabolism , Sodium-Calcium Exchanger/metabolism , Animals , Astrocytes/metabolism , Calcium/metabolism , Calcium-Binding Proteins , Cytosol/metabolism , Disease Models, Animal , Embryo, Mammalian/metabolism , Glial Fibrillary Acidic Protein/metabolism , Inflammation/complications , Inflammation/pathology , Mesencephalon/metabolism , Mesencephalon/pathology , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins , Microglia/metabolism , Mitochondria/metabolism , Motor Activity , Neostriatum/metabolism , Neostriatum/pathology , Nerve Degeneration/complications , Nerve Degeneration/pathology , Nerve Degeneration/physiopathology , Neurons/metabolism , Parkinson Disease/complications , Parkinson Disease/physiopathology , Protein Isoforms/metabolism , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism
20.
Epigenetics ; 12(1): 41-54, 2017 01 02.
Article in English | MEDLINE | ID: mdl-27858532

ABSTRACT

We performed ultra-deep methylation analysis at single molecule level of the promoter region of developmentally regulated D-Aspartate oxidase (Ddo), as a model gene, during brain development and embryonic stem cell neural differentiation. Single molecule methylation analysis enabled us to establish the effective epiallele composition within mixed or pure brain cell populations. In this framework, an epiallele is defined as a specific combination of methylated CpG within Ddo locus and can represent the epigenetic haplotype revealing a cell-to-cell methylation heterogeneity. Using this approach, we found a high degree of polymorphism of methylated alleles (epipolymorphism) evolving in a remarkably conserved fashion during brain development. The different sets of epialleles mark stage, brain areas, and cell type and unravel the possible role of specific CpGs in favoring or inhibiting local methylation. Undifferentiated embryonic stem cells showed non-organized distribution of epialleles that apparently originated by stochastic methylation events on individual CpGs. Upon neural differentiation, despite detecting no changes in average methylation, we observed that the epiallele distribution was profoundly different, gradually shifting toward organized patterns specific to the glial or neuronal cell types. Our findings provide a deep view of gene methylation heterogeneity in brain cell populations promising to furnish innovative ways to unravel mechanisms underlying methylation patterns generation and alteration in brain diseases.


Subject(s)
Brain/embryology , Cell Differentiation/genetics , D-Aspartate Oxidase/genetics , Epigenesis, Genetic , Neural Stem Cells/physiology , Animals , Animals, Newborn , Brain/growth & development , Brain/metabolism , Cells, Cultured , CpG Islands , D-Aspartate Oxidase/metabolism , DNA Methylation , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Mice , Mice, Inbred C57BL , Models, Biological , Polymorphism, Genetic , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...