Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 28(13): 2289-2293, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29807796

ABSTRACT

TRAP1 (Hsp75) is the mitochondrial paralog of the Hsp90 molecular chaperone family. Due to structural similarity among Hsp90 chaperones, a potential strategy to induce apoptosis through mitochondrial TRAP1 ATPase inhibition has been envisaged and a series of compounds has been developed by binding the simple pharmacophoric core of known Hsp90 inhibitors with various appendages bearing a permanent cationic head, or a basic group highly ionizable at physiologic pH. Cationic appendages were selected as vehicles to deliver drugs to mitochondria. Indeed, masses of new derivatives were evidenced to accumulate in the mitochondrial fraction from colon carcinoma cells and a compound in the series, with a guanidine appendage, demonstrated good activity in inhibiting recombinant TRAP1 ATPase and cell growth and in inducing apoptotic cell death in colon carcinoma cells.


Subject(s)
HSP90 Heat-Shock Proteins/antagonists & inhibitors , Isoxazoles/pharmacology , Mitochondria/metabolism , Adenosine Triphosphatases/antagonists & inhibitors , Apoptosis/drug effects , Cell Proliferation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Guanidines/chemical synthesis , Guanidines/chemistry , Guanidines/pharmacology , HCT116 Cells , Humans , Isoxazoles/chemical synthesis , Isoxazoles/chemistry , Molecular Structure , Onium Compounds/chemical synthesis , Onium Compounds/chemistry , Onium Compounds/pharmacology , Organophosphorus Compounds/chemical synthesis , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Pyridinium Compounds/chemical synthesis , Pyridinium Compounds/chemistry , Pyridinium Compounds/pharmacology
2.
Cell Death Dis ; 4: e851, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24113185

ABSTRACT

TNF receptor-associated protein 1 (TRAP1), the main mitochondrial member of the heat shock protein (HSP) 90 family, is induced in most tumor types and is involved in the regulation of proteostasis in the mitochondria of tumor cells through the control of folding and stability of selective proteins, such as Cyclophilin D and Sorcin. Notably, we have recently demonstrated that TRAP1 also interacts with the regulatory protein particle TBP7 in the endoplasmic reticulum (ER), where it is involved in a further extra-mitochondrial quality control of nuclear-encoded mitochondrial proteins through the regulation of their ubiquitination/degradation. Here we show that TRAP1 is involved in the translational control of cancer cells through an attenuation of global protein synthesis, as evidenced by an inverse correlation between TRAP1 expression and ubiquitination/degradation of nascent stress-protective client proteins. This study demonstrates for the first time that TRAP1 is associated with ribosomes and with several translation factors in colon carcinoma cells and, remarkably, is found co-upregulated with some components of the translational apparatus (eIF4A, eIF4E, eEF1A and eEF1G) in human colorectal cancers, with potential new opportunities for therapeutic intervention in humans. Moreover, TRAP1 regulates the rate of protein synthesis through the eIF2α pathway either under basal conditions or under stress, favoring the activation of GCN2 and PERK kinases, with consequent phosphorylation of eIF2α and attenuation of cap-dependent translation. This enhances the synthesis of selective stress-responsive proteins, such as the transcription factor ATF4 and its downstream effectors BiP/Grp78, and the cystine antiporter system xCT, thereby providing protection against ER stress, oxidative damage and nutrient deprivation. Accordingly, TRAP1 silencing sensitizes cells to apoptosis induced by novel antitumoral drugs that inhibit cap-dependent translation, such as ribavirin or 4EGI-1, and reduces the ability of cells to migrate through the pores of transwell filters. These new findings target the TRAP1 network in the development of novel anti-cancer strategies.


Subject(s)
Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Heat-Shock Proteins/metabolism , Protein Biosynthesis , Stress, Physiological , TNF Receptor-Associated Factor 1/metabolism , Colorectal Neoplasms/genetics , Down-Regulation , Endoplasmic Reticulum Chaperone BiP , Eukaryotic Initiation Factor-2/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , HCT116 Cells , Humans , Neoplasms/metabolism , Neoplasms/pathology , Protein Binding , Proteolysis , Ribosomes/metabolism , Signal Transduction , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...