Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 31: 117-34, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23831149

ABSTRACT

The introduction of numerous formulations of Ultra-high molecular weight polyethylene (UHMWPE), which is widely used as a bearing material in orthopedic implants, necessitated screening of bearing couples to identify promising iterations for expensive joint simulations. Pin-on-disk (POD) testers capable of multidirectional sliding can correctly rank formulations of UHMWPE with respect to their predictive in vivo wear behavior. However, there are still uncertainties regarding POD test parameters for facilitating clinically relevant wear mechanisms of UHMWPE. Studies on the development of POD testing were briefly summarized. We systematically reviewed wear rate data of UHMWPE generated by POD testers. To determine if POD testing was capable of correctly ranking bearings and if test parameters outlined in ASTM F732 enabled differentiation between wear behavior of various formulations, mean wear rates of non-irradiated, conventional (25-50kGy) and highly crosslinked (≥90kGy) UHMWPE were grouped and compared. The mean wear rates of non-irradiated, conventional and highly crosslinked UHMWPEs were 7.03, 5.39 and 0.67mm(3)/MC. Based on studies that complied with the guidelines of ASTM F732, the mean wear rates of non-irradiated, conventional and highly crosslinked UHMWPEs were 0.32, 0.21 and 0.04mm(3)/km, respectively. In both sets of results, the mean wear rate of highly crosslinked UHMPWE was smaller than both conventional and non-irradiated UHMWPEs (p<0.05). Thus, POD testers can compare highly crosslinked and conventional UHMWPEs despite different test parameters. Narrowing the allowable range for standardized test parameters could improve sensitivity of multi-axial testers in correctly ranking materials.


Subject(s)
Biocompatible Materials/chemistry , Equipment Failure Analysis/instrumentation , Friction , Joint Prosthesis , Materials Testing/instrumentation , Polyethylenes/chemistry , Anisotropy , Biocompatible Materials/analysis , Polyethylenes/analysis , Stress, Mechanical
2.
J Biomed Mater Res B Appl Biomater ; 93(2): 442-7, 2010 May.
Article in English | MEDLINE | ID: mdl-20166119

ABSTRACT

The objectives of this study were three-fold: (1) to determine the applicability of the small punch test to characterize Bionate 80A polycarbonate urethane (PCU) acetabular implants; (2) to evaluate the susceptibility of PCU acetabular implants to exhibit degradation of mechanical behavior following gamma irradiation in air and accelerated aging; and (3) to compare the oxidation of gamma-air sterilized PCU following accelerated aging and 5 years of natural shelf aging. In addition to attenuated total reflectance-Fourier transform infrared spectroscopy, we also adapted a miniature specimen mechanical test, the small punch test, for the deformable PCU cups. Accelerated aging was performed using ASTM F2003, a standard test that represents a severe oxidative challenge. The results of this study suggest that the small punch test is sufficiently sensitive and reproducible to discriminate slight differences in the large-deformation mechanical behavior of Bionate 80A following accelerated aging. The gamma-air sterilized PCU had a reduction of 9% in ultimate load after aging. Five years of shelf aging had little effect on the mechanical properties of the PCU. Overall, our findings suggest that the Bionate 80A material has greater oxidative stability than ultra-high molecular weight polyethylene following gamma irradiation in air and exposure to a severe oxidative challenge.


Subject(s)
Gamma Rays , Materials Testing , Polycarboxylate Cement , Prostheses and Implants , Sterilization , Urethane , Time Factors
3.
J Biomed Mater Res A ; 90(2): 549-63, 2009 Aug.
Article in English | MEDLINE | ID: mdl-18563825

ABSTRACT

The effect of very low concentrations of Vitamin E on the stability and mechanical behavior of UHMWPE remains unknown. We tested the hypothesis that the oxidation resistance of Vitamin E-blended UHMWPE would be influenced by trace doses of antioxidant, resin, and radiation treatment. Trace concentrations (< or =500 ppm w/w%) of alpha-tocopherol (Vitamin E) were blended separately with GUR 1020 and 1050 resins and molded into disks. From each disk, three groups of 10 mm thick blocks were machined: (1) no irradiation (control); (2) 30 kGy of gamma irradiation in nitrogen; and (3) 75 kGy of gamma irradiation in air. Specimens were subjected to three aging protocols: (a) no aging (control); (b) two weeks and (c) four weeks of accelerated aging in accordance with ASTM F 2003 (i.e., 70 degrees C and 5 atm oxygen). The minimum concentration of Vitamin E needed to stabilize UHMWPE during our accelerated tests depended upon the method of radiation processing. For the 30 and 75 kGy irradiated materials, the addition of 125 ppm or more Vitamin E was sufficient to maintain baseline mechanical and chemical properties through two weeks of accelerated aging. For these groups, the addition of 375 ppm or 500 ppm, respectively, was necessary to maintain baseline mechanical and chemical properties throughout the four-week accelerated aging period. UHMWPE resin molecular weight did not have an effect on oxidation behavior. The results of this experiment therefore supported our hypotheses that trace concentrations of Vitamin E, coupled with radiation treatment-but not resin grade-influence the mechanical and oxidative degradation behavior of UHMWPE.


Subject(s)
Cross-Linking Reagents/chemistry , Oxygen/chemistry , Polyethylenes/chemistry , Vitamin E/metabolism , Biocompatible Materials/chemistry , Gamma Rays , Hot Temperature , Materials Testing , Oxidative Stress , Stress, Mechanical , Surface Properties , Tensile Strength , Time Factors , Vitamin E/chemistry , alpha-Tocopherol/chemistry
4.
J Biomed Mater Res B Appl Biomater ; 79(2): 263-7, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16649169

ABSTRACT

The use of new materials in knee arthroplasty demands a way in which to accurately quantify wear in retrieved components. Methods such as damage scoring, coordinate measurement, and in vivo wear analysis have been used in the past. The limitations in these methods illustrate a need for a different methodology that can accurately quantify wear, which is relatively easy to perform and uses a minimal amount of expensive equipment. Off-the-shelf digital photogrammetry represents a potentially quick and easy alternative to what is readily available. Eighty tibial inserts were visually examined for front and backside wear and digitally photographed in the presence of two calibrated reference fields. All images were segmented (via manual and automated algorithms) using Adobe Photoshop and National Institute of Health ImageJ. Finally, wear was determined using ImageJ and Rhinoceros software. The absolute accuracy of the method and repeatability/reproducibility by different observers were measured in order to determine the uncertainty of wear measurements. To determine if variation in wear measurements was due to implant design, 35 implants of the three most prevalent designs were subjected to retrieval analysis. The overall accuracy of area measurements was 97.8%. The error in automated segmentation was found to be significantly lower than that of manual segmentation. The photogrammetry method was found to be reasonably accurate and repeatable in measuring 2-D areas and applicable to determining wear. There was no significant variation in uncertainty detected among different implant designs. Photogrammetry has a broad range of applicability since it is size- and design-independent. A minimal amount of off-the-shelf equipment is needed for the procedure and no proprietary knowledge of the implant is needed.


Subject(s)
Biocompatible Materials , Knee Prosthesis , Photogrammetry , Humans , Materials Testing , Polyethylenes
SELECTION OF CITATIONS
SEARCH DETAIL
...