Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6243, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37813859

ABSTRACT

G protein-coupled receptors are important drug targets that engage and activate signaling transducers in multiple cellular compartments. Delineating therapeutic signaling from signaling associated with adverse events is an important step towards rational drug design. The glucagon-like peptide-1 receptor (GLP-1R) is a validated target for the treatment of diabetes and obesity, but drugs that target this receptor are a frequent cause of adverse events. Using recently developed biosensors, we explored the ability of GLP-1R to activate 15 pathways in 4 cellular compartments and demonstrate that modifications aimed at improving the therapeutic potential of GLP-1R agonists greatly influence compound efficacy, potency, and safety in a pathway- and compartment-selective manner. These findings, together with comparative structure analysis, time-lapse microscopy, and phosphoproteomics, reveal unique signaling signatures for GLP-1R agonists at the level of receptor conformation, functional selectivity, and location bias, thus associating signaling neighborhoods with functionally distinct cellular outcomes and clinical consequences.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Glucagon-Like Peptide-1 Receptor , Incretins , Humans , Glucagon-Like Peptide-1 Receptor/metabolism , Incretins/adverse effects , Signal Transduction
2.
ACS Chem Biol ; 18(9): 1993-2002, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37622522

ABSTRACT

Tacrine was withdrawn from clinical use as a drug against Alzheimer's disease in 2013, mainly due to drug-induced liver injury. The culprit of tacrine-associated hepatotoxicity is believed to be the 7-OH-tacrine metabolite, a possible precursor of quinone methide (Qmeth), which binds to intracellular -SH proteins. In our study, several different animal and human models (liver microsomes, primary hepatocytes, and liver slices) were used to investigate the biotransformation and hepatotoxicity of tacrine and its 7-substituted analogues (7-methoxy-, 7-phenoxy-, and 7-OH-tacrine). Our goal was to find the most appropriate in vitro model for studying tacrine hepatotoxicity and, through rational structure modifications, to develop derivatives of tacrine that are less prone to Qmeth formation. Our results show that none of animal models tested accurately mimic human tacrine biotransformation; however, the murine model seems to be more suitable than the rat model. Tacrine metabolism was overall most accurately mimicked in three-dimensional (3D) spheroid cultures of primary human hepatocytes (PHHs). In this system, tacrine and 7-methoxytacrine were hydroxylated to 7-OH-tacrine, whereas 7-phenoxytacrine formed, as expected, only trace amounts. Surprisingly, however, our study showed that 7-OH-tacrine was the least hepatotoxic (7-OH-tacrine < tacrine < 7-methoxytacrine < 7-phenoxytacrine) even after doses had been adjusted to achieve the same intracellular concentrations. The formation of Qmeth-cysteine and Qmeth-glutathione adducts after human liver microsome incubation was confirmed by all of the studied tacrine derivatives, but these findings were not confirmed after incubation with 3D PHH spheroids. Therefore, the presented data call into question the suggested previously hypothesized mechanism of toxicity, and the results open new avenues for chemical modifications to improve the safety of novel tacrine derivatives.


Subject(s)
Chemical and Drug Induced Liver Injury , Indolequinones , Methamphetamine , Humans , Animals , Mice , Rats , Tacrine/toxicity , Biotransformation
3.
J Cancer Res Clin Oncol ; 148(12): 3293-3302, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35715537

ABSTRACT

BACKGROUND: One of the main hurdles of oncological therapy is the development of drug resistance. The ABC transporter gene family contributes majorly to cancer chemoresistance. However, effects of somatic expression of most ABC transporters on cancer outcomes remain largely unclear. METHODS: We systematically analyzed expression signatures of all 48 human ABC transporters in samples from 8562 patients across 14 different cancer types. The association between CFTR (ABCC7) expression and outcomes was analyzed experimentally using knock-downs and pharmacological CFTR stimulation. RESULTS: Across 720 analyzed clinical associations with patient outcomes, 363 were nominally significant of which 29 remained significant after stringent Bonferroni correction. Among those were various previously known associations, as well as a multitude of novel factors that correlated with poor prognosis or predicted improved outcomes. The association between low CFTR levels and reduced survival in lung adenocarcinoma was confirmed in two independent cohorts of 246 patients with a history of smoking (logrank P = 0.0021, hazard ratio [HR], 0.49) and 143 never-smokers (logrank P = 0.0023, HR 0.31). Further in vitro experiments using naturally CFTR expressing lung adenocarcinoma cells showed that treatment with CFTR potentiators significantly reduced proliferation at therapeutically relevant concentrations. CONCLUSIONS: These results suggest that CFTR acts as a pharmacologically activatable tumor suppressor and constitutes a promising target for adjuvant therapy in lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Non-Smokers , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Cell Proliferation
5.
Pharmacol Res ; 153: 104590, 2020 03.
Article in English | MEDLINE | ID: mdl-31830522

ABSTRACT

Pharmacogenomics and personalized medicine interventions hold promise to optimize drug treatment modalities and hence, improve the quality of life of the patients by minimizing the occurrence of adverse drug reactions and/or maximizing drug treatment efficacy. To this end, proper guidance for accurately prescribing the correct drug at the right dose is empowered by major regulatory bodies, namely the U.S. Food and Drug Administration (FDA) and the European Medicine Agency (EMA), and well-recognized research consortia, like the Clinical Pharmacogenetics Implementation Consortium (CPIC), that propose therapeutic recommendations after the thorough evaluation of the existing scientific evidence base. In this context, the consistency of these recommendations is crucial for smoothly integrating pharmacogenomics into the clinic. Here, we collected all of the important and clinically actionable pharmacogenomics information provided by the aforementioned renowned sources and documented it in order to assess potential similarities and, most importantly, differences. Our data show that the level of concordance regarding the guidance provided for the same drug-gene association pairs varies significantly, despite the fact that it all derives from a single evidence base. In particular, apart from the expected similarities in a number of association pairs, especially the ones related to cancer genomics, there are still major discrepancies that create confusion as to which guidance should be followed in order to properly inform drug prescribing. This regulatory deficiency calls for the fruitful engagement of the regulatory agencies involved with the contribution of other experts engaged in the field of pharmacogenomics in an effort to harmonize the existing arsenal of guidance for genome-informed drug prescription. The achievement of harmonization would in turn expedite bringing personalized medicine closer to clinical fruition.


Subject(s)
Drug Therapy/methods , Drug-Related Side Effects and Adverse Reactions/prevention & control , Pharmacogenetics/methods , Practice Guidelines as Topic/standards , Precision Medicine/methods , Databases, Pharmaceutical , Drug Prescriptions/standards , Genetic Markers/genetics , Humans , Pharmacogenetics/legislation & jurisprudence , United States , United States Food and Drug Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...