Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Conserv Biol ; 36(1): e13784, 2022 02.
Article in English | MEDLINE | ID: mdl-34114682

ABSTRACT

Coastal zones, which connect terrestrial and aquatic ecosystems, are among the most resource-rich regions globally and home to nearly 40% of the global human population. Because human land-based activities can alter natural processes in ways that affect adjacent aquatic ecosystems, land-sea interactions are increasingly recognized as critical to coastal conservation planning and governance. However, the complex socioeconomic dynamics inherent in coastal and marine socioecological systems (SESs) have received little consideration. Drawing on knowledge generalized from long-term studies in Caribbean Nicaragua, we devised a conceptual framework that clarifies the multiple ways socioeconomically driven behavior can link the land and sea. In addition to other ecosystem effects, the framework illustrates how feedbacks resulting from changes to aquatic resources can influence terrestrial resource management decisions and land uses. We assessed the framework by applying it to empirical studies from a variety of coastal SESs. The results suggest its broad applicability and highlighted the paucity of research that explicitly investigates the effects of human behavior on coastal SES dynamics. We encourage researchers and policy makers to consider direct, indirect, and bidirectional cross-ecosystem links that move beyond traditionally recognized land-to-sea processes.


Los Usuarios de Recursos como Conexiones entre la Tierra y el Mar dentro de los Sistemas Socioecológicos Marinos y Costeros Resumen Las zonas costeras, que conectan los ecosistemas terrestres y acuáticos, se encuentran entre las regiones más ricas en recursos a nivel mundial y además albergan a casi el 40% de la población humana de todo el mundo. Ya que las actividades humanas terrestres pueden alterar los procesos naturales de manera que terminan por afectar a los ecosistemas acuáticos adyacentes, cada vez se reconoce más a las interacciones tierra-mar como críticas para la planeación de la conservación y la gestión costera. Sin embargo, las complejas dinámicas socioeconómicas inherentes a los sistemas socioecológicos (SES) marinos y costeros han recibido poca atención. Con el conocimiento generalizado a partir de los estudios a largo plazo realizados en el Caribe de Nicaragua como punto de partida, diseñamos un marco conceptual que clarifica las múltiples formas en las que el comportamiento con origen socioeconómico puede conectar a la tierra y al mar. Sumado a otros efectos de los ecosistemas, el marco conceptual ilustró cómo los comentarios resultantes de los cambios ocurridos en los recursos acuáticos pueden influir sobre las decisiones de manejo de recursos terrestres y de uso de suelo. Evaluamos el marco conceptual mediante su aplicación a los estudios empíricos de una variedad de SES costeros. Los resultados sugirieron su aplicabilidad generalizada y resaltaron la escasez de investigaciones busquen específicamente los efectos del comportamiento humano sobre las dinámicas de los SES costeros. Alentamos a los investigadores y a los formuladores de políticas a considerar las conexiones directas, indirectas y bidireccionales entre ecosistemas que van más allá de los procesos de tierra a mar reconocidos tradicionalmente.


Subject(s)
Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Humans , Nicaragua
2.
mBio ; 11(1)2020 01 21.
Article in English | MEDLINE | ID: mdl-31964725

ABSTRACT

The strategy that microbial decomposers take with respect to using substrate for growth versus maintenance is one essential biological determinant of the propensity of carbon to remain in soil. To quantify the environmental sensitivity of this key physiological trade-off, we characterized the carbon use efficiency (CUE) of 23 soil bacterial isolates across seven phyla at three temperatures and with up to four substrates. Temperature altered CUE in both an isolate-specific manner and a substrate-specific manner. We searched for genes correlated with the temperature sensitivity of CUE on glucose and deemed those functional genes which were similarly correlated with CUE on other substrates to be validated as markers of CUE. Ultimately, we did not identify any such robust functional gene markers of CUE or its temperature sensitivity. However, we found a positive correlation between rRNA operon copy number and CUE, opposite what was expected. We also found that inefficient taxa increased their CUE with temperature, while those with high CUE showed a decrease in CUE with temperature. Together, our results indicate that CUE is a flexible parameter within bacterial taxa and that the temperature sensitivity of CUE is better explained by observed physiology than by genomic composition across diverse taxa. We conclude that the bacterial CUE response to temperature and substrate is more variable than previously thought.IMPORTANCE Soil microbes respond to environmental change by altering how they allocate carbon to growth versus respiration-or carbon use efficiency (CUE). Ecosystem and Earth System models, used to project how global soil C stocks will continue to respond to the climate crisis, often assume that microbes respond homogeneously to changes in the environment. In this study, we quantified how CUE varies with changes in temperature and substrate quality in soil bacteria and evaluated why CUE characteristics may differ between bacterial isolates and in response to altered growth conditions. We found that bacterial taxa capable of rapid growth were more efficient than those limited to slow growth and that taxa with high CUE were more likely to become less efficient at higher temperatures than those that were less efficient to begin with. Together, our results support the idea that the CUE temperature response is constrained by both growth rate and CUE and that this partly explains how bacteria acclimate to a warming world.


Subject(s)
Bacteria , Carbon/chemistry , Soil Microbiology , Soil/chemistry , Temperature , Bacteria/classification , Bacteria/genetics , Carbon Cycle , Ecosystem , Metagenome , Metagenomics , Phylogeny
3.
PLoS One ; 12(10): e0186683, 2017.
Article in English | MEDLINE | ID: mdl-29077748

ABSTRACT

Anthropogenic threats to natural systems can be exacerbated due to connectivity between marine, freshwater, and terrestrial ecosystems, complicating the already daunting task of governance across the land-sea interface. Globalization, including new access to markets, can change social-ecological, land-sea linkages via livelihood responses and adaptations by local people. As a first step in understanding these trans-ecosystem effects, we examined exit and entry decisions of artisanal fishers and smallholder farmers on the rapidly globalizing Caribbean coast of Nicaragua. We found that exit and entry decisions demonstrated clear temporal and spatial patterns and that these decisions differed by livelihood. In addition to household characteristics, livelihood exit and entry decisions were strongly affected by new access to regional and global markets. The natural resource implications of these livelihood decisions are potentially profound as they provide novel linkages and spatially-explicit feedbacks between terrestrial and marine ecosystems. Our findings support the need for more scientific inquiry in understanding trans-ecosystem tradeoffs due to linked-livelihood transitions as well as the need for a trans-ecosystem approach to natural resource management and development policy in rapidly changing coastal regions.


Subject(s)
Conservation of Natural Resources , Disasters , Ecosystem , Internationality , Animals , Nicaragua
4.
PLoS One ; 11(9): e0162529, 2016.
Article in English | MEDLINE | ID: mdl-27606619

ABSTRACT

Tropical forest conversion to pasture, which drives greenhouse gas emissions, soil degradation, and biodiversity loss, remains a pressing socio-ecological challenge. This problem has spurred increased interest in the potential of small-scale agroforestry systems to couple sustainable agriculture with biodiversity conservation, particularly in rapidly developing areas of the tropics. In addition to providing natural resources (i.e. food, medicine, lumber), agroforestry systems have the potential to maintain higher levels of biodiversity and greater biomass than lower diversity crop or pasture systems. Greater plant diversity may also enhance soil quality, further supporting agricultural productivity in nutrient-limited tropical systems. Yet, the nature of these relationships remains equivocal. To better understand how different land use strategies impact ecosystem services, we characterized the relationships between plant diversity (including species richness, phylogenetic diversity, and natural resource diversity), and soil quality within pasture, agroforests, and secondary forests, three common land use types maintained by small-scale farmers in the Pearl Lagoon Basin, Nicaragua. The area is undergoing accelerated globalization following the 2007 completion of the region's first major road; a change which is expected to increase forest conversion for agriculture. However, farmer agrobiodiversity maintenance in the Basin was previously found to be positively correlated with affiliation to local agricultural NGOs through the maintenance of agroforestry systems, despite these farmers residing in the communities closest to the new road, highlighting the potential for maintaining diverse agroforestry agricultural strategies despite heightened globalization pressures. We found that agroforestry sites tended to have higher surface soil %C, %N, and pH relative to neighboring to secondary forest, while maintaining comparable plant diversity. In contrast, pasture reduced species richness, phylogenetic diversity, and natural resource diversity. No significant relationships were found between plant diversity and the soil properties assessed; however higher species richness and phylodiversity was positively correlated with natural resource diversity. These finding suggest that small, diversified agroforestry systems may be a viable strategy for promoting both social and ecological functions in eastern Nicaragua and other rapidly developing areas of the tropics.


Subject(s)
Agriculture , Biodiversity , Forestry , Atlantic Ocean , Geography , Nicaragua , Soil , Species Specificity
5.
Nature ; 497(7451): 615-8, 2013 May 30.
Article in English | MEDLINE | ID: mdl-23676669

ABSTRACT

High latitudes contain nearly half of global soil carbon, prompting interest in understanding how the Arctic terrestrial carbon balance will respond to rising temperatures. Low temperatures suppress the activity of soil biota, retarding decomposition and nitrogen release, which limits plant and microbial growth. Warming initially accelerates decomposition, increasing nitrogen availability, productivity and woody-plant dominance. However, these responses may be transitory, because coupled abiotic-biotic feedback loops that alter soil-temperature dynamics and change the structure and activity of soil communities, can develop. Here we report the results of a two-decade summer warming experiment in an Alaskan tundra ecosystem. Warming increased plant biomass and woody dominance, indirectly increased winter soil temperature, homogenized the soil trophic structure across horizons and suppressed surface-soil-decomposer activity, but did not change total soil carbon or nitrogen stocks, thereby increasing net ecosystem carbon storage. Notably, the strongest effects were in the mineral horizon, where warming increased decomposer activity and carbon stock: a 'biotic awakening' at depth.


Subject(s)
Carbon Cycle , Carbon/analysis , Cold Climate , Ecosystem , Global Warming/statistics & numerical data , Soil/chemistry , Temperature , Animals , Arctic Regions , Biomass , Discriminant Analysis , Food Chain , History, 20th Century , History, 21st Century , Nitrogen/metabolism , Photosynthesis , Plants/metabolism , Rain , Soil/analysis , Soil/parasitology , Soil Microbiology , Time Factors , Uncertainty
6.
New Phytol ; 196(1): 68-78, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22924404

ABSTRACT

Ecosystems across the biosphere are subject to rapid changes in elemental balance and climatic regimes. A major force structuring ecological responses to these perturbations lies in the stoichiometric flexibility of systems - the ability to adjust their elemental balance whilst maintaining function. The potential for stoichiometric flexibility underscores the utility of the application of a framework highlighting the constraints and consequences of elemental mass balance and energy cycling in biological systems to address global change phenomena. Improvement in the modeling of ecological responses to disturbance requires the consideration of the stoichiometric flexibility of systems within and across relevant scales. Although a multitude of global change studies over various spatial and temporal scales exist, the explicit consideration of the role played by stoichiometric flexibility in linking micro-scale to macro-scale biogeochemical processes in terrestrial ecosystems remains relatively unexplored. Focusing on terrestrial systems under change, we discuss the mechanisms by which stoichiometric flexibility might be expressed and connected from organisms to ecosystems. We suggest that the transition from the expression of stoichiometric flexibility within individuals to the community and ecosystem scales is a key mechanism regulating the extent to which environmental perturbation may alter ecosystem carbon and nutrient cycling dynamics.


Subject(s)
Carbon Cycle , Carbon/metabolism , Climate Change , Ecosystem , Nitrogen Cycle , Phosphorus/metabolism , Humans
7.
Proc Natl Acad Sci U S A ; 107(40): 17217-22, 2010 Oct 05.
Article in English | MEDLINE | ID: mdl-20855605

ABSTRACT

Ecologists have long observed that consumers can maintain species diversity in communities of their prey. Many theories of how consumers mediate diversity invoke a tradeoff between species' competitive ability and their ability to withstand predation. Under this constraint, the best competitors are also most susceptible to consumers, preventing them from excluding other species. However, empirical evidence for competition-defense tradeoffs is limited and, as such, the mechanisms by which consumers regulate diversity remain uncertain. We performed a meta-analysis of 36 studies to evaluate the prevalence of the competition-defense tradeoff and its role in maintaining diversity in plant communities. We quantified species' responses to experimental resource addition and consumer removal as estimates of competitive ability and resistance to consumers, respectively. With this analysis, we found mixed empirical evidence for a competition-defense tradeoff; in fact, competitive ability tended to be weakly positively correlated with defense overall. However, when present, negative relationships between competitive ability and defense influenced species diversity in the manner predicted by theory. In the minority of communities for which a tradeoff was detected, species evenness was higher, and resource addition and consumer removal reduced diversity. Our analysis reframes the commonly held notion that consumers structure plant communities through a competition-defense tradeoff. Such a tradeoff can maintain diversity when present, but negative correlations between competitive ability and defense were less common than is often assumed. In this respect, this study supports an emerging theoretical paradigm in which predation interacts with competition to both enhance and reduce species diversity.


Subject(s)
Biodiversity , Plants , Population Dynamics , Ecosystem , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...