Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Eur J Pharmacol ; 977: 176758, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38901528

ABSTRACT

Vinclozolin (VCZ) is a common dicarboximide fungicide used to protect crops from diseases. It is also an endocrine disruptor, and its effects on various organs have been described but its influence on vasculature has not yet been addressed. This study focuses on the potential mechanism of VCZ-induced vascular injury. The effect of VCZ on vascular function in terms of relaxing and contracting response was evaluated in mice aorta. A short exposure to VCZ affected the endothelial but not the smooth muscle component. Specifically, it caused a disruption of the eNOS/NO signaling. In line, a short exposure to VCZ in bovine aortic endothelial cells promoted eNOS uncoupling resulting in a reduction of NO bioavailability and eNOS dimer/monomer ratio, and in turn an increase of nitro-tyrosine levels and ROS formation. Prolonging the exposure to VCZ (3 and 6h) an up-regulation of Nox4, enzyme-generating ROS constitutively expressed in endothelial cells, and an increase in ROS and malondialdehyde content coupled with a reduction in NO levels were found. These events were strictly linked to endoplasmic reticulum stress as demonstrated by the phosphorylation of inositol-requiring transmembrane kinase endoribonuclease 1α (IRE1α), a stress sensor and its reversion by using a selective inhibitor. Collectively, these results demonstrated that VCZ provokes endothelial dysfunction by oxidative stress involving eNOS/Nox4/IRE1α axis. The rapid exposure affected the endothelial function promoting eNOS uncoupling while a post-transcriptional modification, involving Nox4/IRE1α signaling, occurred following prolonged exposure. Thus, exposure to VCZ could contribute to the onset and/or progression of cardiovascular diseases associated with endothelial dysfunction.


Subject(s)
Endocrine Disruptors , Endoribonucleases , Endothelial Cells , NADPH Oxidase 4 , Nitric Oxide Synthase Type III , Nitric Oxide , Oxazoles , Protein Serine-Threonine Kinases , Signal Transduction , Animals , Nitric Oxide Synthase Type III/metabolism , Signal Transduction/drug effects , Cattle , Mice , Endocrine Disruptors/toxicity , NADPH Oxidase 4/metabolism , Oxazoles/pharmacology , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Nitric Oxide/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Male , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Reactive Oxygen Species/metabolism , Endoplasmic Reticulum Stress/drug effects , Aorta/drug effects , Aorta/metabolism , Aorta/pathology
2.
Int J Mol Sci ; 24(22)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38003389

ABSTRACT

Alzheimer's disease (AD) represents the most frequent type of dementia worldwide, and aging is the most important risk factor for the sporadic form of the pathology. The endoplasmic reticulum (ER), the main cellular actor involved in proteostasis, appears significantly compromised in AD due to the accumulation of the ß-amyloid (Aß) protein and the phosphorylated Tau protein. Increasing protein misfolding activates a specific cellular response known as Unfolded Protein Response (UPR), which orchestrates the recovery of ER function. The aim of the present study was to investigate the role of UPR in a murine model of AD induced by intracerebroventricular (i.c.v.) injection of Aß1-42 oligomers at 3 or 18 months. The oligomer injection in aged animals induced memory impairment, oxidative stress, and the depletion of glutathione reserve. Furthermore, the RNA sequencing and the bioinformatic analysis performed showed the enrichment of several pathways involved in neurodegeneration and protein regulations. The analysis highlighted the significant dysregulation of the protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1α (IRE1α) and activating transcription factor 6 (ATF-6). In turn, ER stress affected the PI3K/Akt/Gsk3ß and MAPK/ERK pathways, highlighting Mapkapk5 as a potential marker, whose regulation could lead to the definition of new pharmacological and neuroprotective strategies to counteract AD.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Protein Serine-Threonine Kinases/metabolism , Endoribonucleases/metabolism , Disease Models, Animal , Phosphatidylinositol 3-Kinases/metabolism , Unfolded Protein Response , Endoplasmic Reticulum Stress/genetics
3.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498866

ABSTRACT

Endocrine-disrupting chemicals (EDCs) are different natural and synthetic chemicals that may interfere with several mechanisms of the endocrine system producing adverse developmental, metabolic, reproductive, and neurological effects in both human beings and wildlife. Among pesticides, numerous chemicals have been identified as EDCs. MicroRNAs (miRNAs) can regulate gene expression, making fine adjustments in mRNA abundance and regulating proteostasis. We hypothesized that exposure to low doses of atrazine, cypermethrin, and vinclozolin may lead to effects on miRNA expression in SH-SY5Y cells. In particular, the exposure of SH-SY5Y cells to subtoxic concentrations of vinclozolin is able to downregulate miR-29b-3p expression leading to the increase in the related gene expression of ADAM12 and CDK6, which may promote a pro-oncogenic response through the activation of the PI3K/Akt/mTOR pathway and counteracting p53 activity. A better understanding of the molecular mechanisms of EDCs could provide important insight into their role in human disease.


Subject(s)
Atrazine , Endocrine Disruptors , MicroRNAs , Neuroblastoma , Oxazoles , Pyrethrins , Humans , Atrazine/toxicity , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Neuroblastoma/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/genetics , Pyrethrins/toxicity , Endocrine Disruptors/toxicity , Oxazoles/toxicity
4.
J Med Chem ; 65(2): 1283-1301, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34213342

ABSTRACT

In small molecule binding, water is not a passive bystander but rather takes an active role in the binding site, which may be decisive for the potency of the inhibitor. Here, by addressing a high-energy water, we improved the IC50 value of our co-crystallized glycogen synthase kinase-3ß (GSK-3ß) inhibitor by nearly two orders of magnitude. Surprisingly, our results demonstrate that this high-energy water was not displaced by our potent inhibitor (S)-3-(3-((7-ethynyl-9H-pyrimido[4,5-b]indol-4-yl)(methyl)amino)piperidin-1-yl)propanenitrile ((S)-15, IC50 value of 6 nM). Instead, only a subtle shift in the location of this water molecule resulted in a dramatic decrease in the energy of this high-energy hydration site, as shown by the WaterMap analysis combined with microsecond timescale molecular dynamics simulations. (S)-15 demonstrated both a favorable kinome selectivity profile and target engagement in a cellular environment and reduced GSK-3 autophosphorylation in neuronal SH-SY5Y cells. Overall, our findings highlight that even a slight adjustment in the location of a high-energy water can be decisive for ligand binding.


Subject(s)
Drug Design , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Neuroblastoma/drug therapy , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Pyrimidines/chemistry , Water/chemistry , Cell Proliferation , Humans , Molecular Dynamics Simulation , Neuroblastoma/enzymology , Neuroblastoma/pathology , Structure-Activity Relationship , Tumor Cells, Cultured
5.
Int J Mol Sci ; 22(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34681862

ABSTRACT

Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor. The median survival rate from diagnosis ranges from 15 to 17 months because the tumor is resistant to most therapeutic strategies. GBM exhibits microvascular hyperplasia and pronounced necrosis triggered by hypoxia. Sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables, has already demonstrated the ability to inhibit cell proliferation, by provoking cell cycle arrest, and leading to apoptosis in many cell lines. In this study, we investigated the antineoplastic effects of SFN [20-80 µM for 48 h] in GBM cells under normoxic and hypoxic conditions. Cell viability assays, flow cytometry, and Western blot results revealed that SFN could induce apoptosis of GBM cells in a dose-dependent manner, under both conditions. In particular, SFN significantly induced caspase 3/7 activation and DNA fragmentation. Moreover, our results demonstrated that SFN suppressed GBM cells proliferation by arresting the cell cycle at the S-phase, also under hypoxic condition, and that these effects may be due in part to its ability to induce oxidative stress by reducing glutathione levels and to increase the phosphorylation of extracellular signal-regulated kinases (ERKs). Overall, we hypothesized that SFN treatment might serve as a potential therapeutic strategy, alone or in combination, against GBM.


Subject(s)
Apoptosis/drug effects , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Isothiocyanates/pharmacology , Sulfoxides/pharmacology , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Glioblastoma/metabolism , Glioblastoma/pathology , Glutathione/metabolism , Humans , Isothiocyanates/administration & dosage , MAP Kinase Signaling System/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Phosphorylation/drug effects , Sulfoxides/administration & dosage , Tumor Hypoxia/drug effects
6.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209586

ABSTRACT

Amyloid beta (Aß)-induced abnormal neuroinflammation is recognized as a major pathological feature of Alzheimer's disease (AD), which results in memory impairment. Research exploring low-grade systemic inflammation and its impact on the development and progression of neurodegenerative disease has increased. A particular research focus has been whether systemic inflammation arises only as a secondary effect of disease, or it is also a cause of pathology. The inflammasomes, and more specifically the NLRP3 inflammasome, are crucial components of the innate immune system and are usually activated in response to infection or tissue damage. Although inflammasome activation plays critical roles against various pathogens in host defense, overactivation of inflammasome contributes to the pathogenesis of inflammatory diseases, including acute central nervous system (CNS) injuries and chronic neurodegenerative diseases, such as AD. This review summarizes the current literature on the role of the NLRP3 inflammasome in the pathogenesis of AD, and its involvement in infections, particularly SARS-CoV-2. NLRP3 might represent the crossroad between the hypothesized neurodegeneration and the primary COVID-19 infection.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Alzheimer Disease/metabolism , Animals , Coronavirus/pathogenicity , Humans , Immunity, Innate , Microglia/metabolism , Virus Diseases/immunology , Virus Diseases/pathology
7.
Int J Mol Sci ; 21(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105671

ABSTRACT

Glycogen synthase kinase-3ß (GSK-3ß) is a potential target in the field of Alzheimer's disease drug discovery. We recently reported a new class of 9H-pyrimido[4,5-b]indole-based GSK-3ß inhibitors, of which 3-(3-((7-chloro-9H-pyrimido[4,5-b]indol-4-yl)(methyl)amino)piperidin-1-yl)propanenitrile (1) demonstrated promising inhibitory potency. However, this compound underwent rapid degradation by human liver microsomes. Starting from 1, we prepared a series of amide-based derivatives and studied their structure-activity relationships against GSK-3ß supported by 1 µs molecular dynamics simulations. The biological potency of this series was substantially enhanced by identifying the eutomer configuration at the stereocenter. Moreover, the introduction of an amide bond proved to be an effective strategy to eliminate the metabolic hotspot. The most potent compounds, (R)-3-(3-((7-chloro-9H-pyrimido[4,5-b]indol-4-yl)(methyl)amino)piperidin-1-yl)-3-oxopropanenitrile ((R)-2) and (R)-1-(3-((7-bromo-9Hpyrimido[4,5-b]indol-4-yl)(methyl)amino)piperidin-1-yl)propan-1-one ((R)-28), exhibited IC50 values of 480 nM and 360 nM, respectively, and displayed improved metabolic stability. Their favorable biological profile is complemented by minimal cytotoxicity and neuroprotective properties.


Subject(s)
Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Animals , CHO Cells , Cell Line , Cricetulus , Drug Discovery , Drug Evaluation, Preclinical/methods , Drug Stability , Female , Glycogen Synthase Kinase 3 beta/chemistry , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Indoles/chemistry , Male , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Molecular Dynamics Simulation , Protein Kinase Inhibitors/pharmacokinetics , Structure-Activity Relationship
8.
Oxid Med Cell Longev ; 2020: 8363245, 2020.
Article in English | MEDLINE | ID: mdl-32832006

ABSTRACT

Neurodegenerative disease is an umbrella term for different conditions which primarily affect the neurons in the human brain. In the last century, significant research has been focused on mechanisms and risk factors relevant to the multifaceted etiopathogenesis of neurodegenerative diseases. Currently, neurodegenerative diseases are incurable, and the treatments available only control the symptoms or delay the progression of the disease. This review is aimed at characterizing the complex network of molecular mechanisms underpinning acute and chronic neurodegeneration, focusing on the disturbance in redox homeostasis, as a common mechanism behind five pivotal risk factors: aging, oxidative stress, inflammation, glycation, and vascular injury. Considering the complex multifactorial nature of neurodegenerative diseases, a preventive strategy able to simultaneously target multiple risk factors and disease mechanisms at an early stage is most likely to be effective to slow/halt the progression of neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases/therapy , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Humans , Middle Aged , Oxidation-Reduction , Risk Factors , Young Adult
9.
Antioxidants (Basel) ; 9(6)2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32630394

ABSTRACT

Oxidative stress (OS) appears to be an important determinant during the different stages of progression of Alzheimer's Disease (AD). In particular, impaired antioxidant defense mechanisms, such as the decrease of glutathione (GSH) and nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), a master regulator of antioxidant genes, including those for GSH, are associated with OS in the human AD brain. Among the neuropathological hallmarks of AD, the soluble oligomers of amyloid beta (A) peptides seem to promote neuronal death through mitochondrial dysfunction and OS. In this regard, bifunctional antioxidants can exert a dual neuroprotective role by scavenging reactive oxygen species (ROS) directly and concomitant induction of antioxidant genes. In this study, among natural coumarins (esculetin, scopoletin, fraxetin and daphnetin), we demonstrated the ability of esculetin (ESC) to prevent and counteract ROS formation in neuronal SH-SY5Y cells, suggesting its profile as a bifunctional antioxidant. In particular, ESC increased the resistance of the SH-SY5Y cells against OS through the activation of Nrf2 and increase of GSH. In similar experimental conditions, ESC could also protect the SH-SY5Y cells from the OS and neuronal death evoked by oligomers of A1-42 peptides. Further, the use of the inhibitors PD98059 and LY294002 also showed that Erk1/2 and Akt signaling pathways were involved in the neuroprotection mediated by ESC. These results encourage further research in AD models to explore the efficacy and safety profile of ESC as a novel neuroprotective agent.

10.
Stroke ; 51(6): 1844-1854, 2020 06.
Article in English | MEDLINE | ID: mdl-32404038

ABSTRACT

Background and Purpose- Commensal gut bacteria have a profound impact on stroke pathophysiology. Here, we investigated whether modification of the microbiota influences acute and long-term outcome in mice subjected to stroke. Methods- C57BL/6 male mice received a cocktail of antibiotics or single antibiotic. After 4 weeks, fecal bacterial density of the 16S rRNA gene was quantitated by qPCR, and phylogenetic classification was obtained by 16S rRNA gene sequencing. Infarct volume and hemispheric volume loss were measured 3 days and 5 weeks after middle cerebral artery occlusion, respectively. Neurological deficits were tested by the Tape Test and the open field test. Results- Mice treated with a cocktail of antibiotics displayed a significant reduction of the infarct volume in the acute phase of stroke. The neuroprotective effect was abolished in mice recolonized with a wild-type microbiota. Single antibiotic treatment with either ampicillin or vancomycin, but not neomycin, was sufficient to reduce the infarct volume and improved motorsensory function 3 days after stroke. This neuroprotective effect was correlated with a specific microbial population rather than the total bacterial density. In particular, random forest analysis trained for the severity of the brain damage revealed that Bacteroidetes S24.7 and the enzymatic pathway for aromatic metabolism discriminate between large versus small infarct size. Additionally, the microbiota signature in the ampicillin-treated mice was associated with a reduced gut inflammation, long-term favorable outcome shown by an amelioration of the stereotypic behavior, and a reduction of brain tissue loss in comparison to control and was predictive of a regulation of short-chain fatty acids and tryptophan pathways. Conclusions- The findings highlight the importance of the intestinal microbiota in short- and long-term outcomes of ischemic stroke and raises the possibility that targeted modification of the microbiome associated with specific microbial enzymatic pathways may provide a preventive strategy in patients at high risk for stroke. Visual Overview- An online visual overview is available for this article.


Subject(s)
Bacteria/growth & development , Brain Ischemia , Gastrointestinal Microbiome , Acute Disease , Animals , Bacteria/classification , Bacteria/genetics , Brain Ischemia/microbiology , Brain Ischemia/prevention & control , Male , Mice , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Stroke/microbiology , Stroke/prevention & control
11.
J Clin Med ; 9(1)2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31906578

ABSTRACT

Mitochondria are dynamic organelles that undergo constant fission and fusion. Mitochondria dysfunction underlies several human disorders, including Alzheimer's disease (AD). Preservation of mitochondrial dynamics is fundamental for regulating the organelle's functions. Several proteins participate in the regulation of mitochondrial morphology and networks, and among these, Mitofusin 2 (Mfn2) has been extensively studied. This review focuses on the role of Mfn2 in mitochondrial dynamics and in the crosstalk between mitochondria and the endoplasmic reticulum, in particular in AD. Understanding how this protein may be related to AD pathogenesis will provide essential information for the development of therapies for diseases linked to disturbed mitochondrial dynamics, as in AD.

12.
Front Pharmacol ; 10: 658, 2019.
Article in English | MEDLINE | ID: mdl-31244664

ABSTRACT

Alzheimer's disease (AD) is the most frequent type of dementia in older people. The complex nature of AD calls for the development of multitarget agents addressing key pathogenic processes. Donepezil, an acetylcholinesterase inhibitor, is a first-line acetylcholinesterase inhibitor used for the treatment of AD. Although several studies have demonstrated the symptomatic efficacy of donepezil treatment in AD patients, the possible effects of donepezil on the AD process are not yet known. In this study, a novel feruloyl-donepezil hybrid compound (PQM130) was synthesized and evaluated as a multitarget drug candidate against the neurotoxicity induced by Aß1-42 oligomer (AßO) injection in mice. Interestingly, PQM130 had already shown anti-inflammatory activity in different in vivo models and neuroprotective activity in human neuronal cells. The intracerebroventricular (i.c.v.) injection of AßO in mice caused the increase of memory impairment, oxidative stress, neurodegeneration, and neuroinflammation. Instead, PQM130 (0.5-1 mg/kg) treatment after the i.c.v. AßO injection reduced oxidative damage and neuroinflammation and induced cell survival and protein synthesis through the modulation of glycogen synthase kinase 3ß (GSK3ß) and extracellular signal-regulated kinases (ERK1/2). Moreover, PQM130 increased brain plasticity and protected mice against the decline in spatial cognition. Even more interesting is that PQM130 modulated different pathways compared to donepezil, and it is much more effective in counteracting AßO damage. Therefore, our findings highlighted that PQM130 is a potent multi-functional agent against AD and could act as a promising neuroprotective compound for anti-AD drug development.

13.
Sci Rep ; 9(1): 3965, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30850634

ABSTRACT

Evidence is accumulating that the main chronic diseases of aging Alzheimer's disease (AD) and type-2 diabetes mellitus (T2DM) share common pathophysiological mechanisms. This study aimed at applying systems biology approaches to increase the knowledge of the shared molecular pathways underpinnings of AD and T2DM. We analysed transcriptomic data of post-mortem AD and T2DM human brains to obtain disease signatures of AD and T2DM and combined them with protein-protein interaction information to construct two disease-specific networks. The overlapping AD/T2DM network proteins were then used to extract the most representative Gene Ontology biological process terms. The expression of genes identified as relevant was studied in two AD models, 3xTg-AD and ApoE3/ApoE4 targeted replacement mice. The present transcriptomic data analysis revealed a principal role for autophagy in the molecular basis of both AD and T2DM. Our experimental validation in mouse AD models confirmed the role of autophagy-related genes. Among modulated genes, Cyclin-Dependent Kinase Inhibitor 1B, Autophagy Related 16-Like 2, and insulin were highlighted. In conclusion, the present investigation revealed autophagy as the central dys-regulated pathway in highly co-morbid diseases such as AD and T2DM allowing the identification of specific genes potentially involved in disease pathophysiology which could become novel targets for therapeutic intervention.


Subject(s)
Alzheimer Disease/pathology , Autophagy/physiology , Diabetes Mellitus, Type 2/pathology , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Brain/pathology , Comorbidity , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Humans , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Transcriptome/physiology
14.
Nutrients ; 10(11)2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30441761

ABSTRACT

Sulforaphane (SFN), an isothiocyanate (ITC) derived from cruciferous vegetables, particularly broccoli and broccoli sprouts, has been widely investigated due to its promising health-promoting properties in disease, and low toxicity in normal tissue. Although not yet fully understood, many mechanisms of anticancer activity at each step of cancer development have been attributed to this ITC. Given the promising data available regarding SFN, this review aimed to provide an overview on the potential activities of SFN related to the cellular mechanisms involved in glioblastoma (GBM) progression. GBM is the most frequent malignant brain tumor among adults and is currently an incurable disease due mostly to its highly invasive phenotype, and the poor efficacy of the available therapies. Despite all efforts, the median overall survival of GBM patients remains approximately 1.5 years under therapy. Therefore, there is an urgent need to provide support for translating the progress in understanding the molecular background of GBM into more complex, but promising therapeutic strategies, in which SFN may find a leading role.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Brassica/chemistry , Glioblastoma/drug therapy , Isothiocyanates/pharmacology , Vegetables/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Humans , Isothiocyanates/chemistry , Sulfoxides
15.
Aging Dis ; 9(4): 605-622, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30090650

ABSTRACT

Alzheimer's disease (AD) is a progressive pathology, where dementia symptoms gradually worsen over a number of years. The hallmarks of AD, such as amyloid ß-peptide (Aß) in senile plaque and neurofibrillary tangles, are strongly intertwined with oxidative stress, which is considered one of the common effectors of the cascade of degenerative events. The endogenous nuclear factor erythroid 2-related factor 2 (Nrf2) is the "master regulator" of the antioxidant response and it is known as an indicator and regulator of oxidative stress. The present study aimed to determine the potential neuroprotective activity of caffeic acid phenethyl ester (CAPE), a polyphenolic compound abundant in honeybee, against the neurotoxicity of Aß1-42 oligomers (AßO) in mice. An intracerebroventricular (i.c.v.) injection of AßO into the mouse brain triggered increased reactive oxygen species levels, neurodegeneration, neuroinflammation, and memory impairment. In contrast, the intraperitoneal administration of CAPE (10 mg/kg) after i.c.v. AßO-injection counteracted oxidative stress accompanied by an induction of Nrf2 and heme oxygenase-1 via the modulation of glycogen synthase kinase 3ß in the hippocampus of mice. Additionally, CAPE treatment decreased AßO-induced neuronal apoptosis and neuroinflammation, and improved learning and memory, protecting mice against the decline in spatial cognition. Our findings demonstrate that CAPE could potentially be considered as a promising neuroprotective agent against progressive neurodegenerative diseases such as AD.

16.
Molecules ; 23(7)2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30037040

ABSTRACT

Chalcones have shown a broad spectrum of biological activities with clinical potential against various diseases. The biological activities are mainly attributed to the presence in the chalcones of the α,ß-unsaturated carbonyl system, perceived as a potential Michael acceptor. Chalcones could activate the Kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway through a Michael addition reaction with the cysteines of Keap1, which acts as a redox sensor and negative regulator of Nrf2. This modification allows the dissociation of Nrf2 from the cytoplasmic complex with Keap1 and its nuclear translocation. At this level, Nrf2 binds to the antioxidant response element (ARE) and activates the expression of several detoxification, antioxidant and anti-inflammatory genes as well as genes involved in the clearance of damaged proteins. In this regard, the Keap1/Nrf2⁻ARE pathway is a new potential pharmacological target for the treatment of many chronic diseases. In this review we summarize the current progress in the study of Keap1/Nrf2⁻ARE pathway activation by natural and synthetic chalcones and their potential pharmacological applications. Among the pharmacological activities highlighted, anti-inflammatory activity was more evident than others, suggesting a multi-target Michael acceptor mechanism for the chalcones involving key regulators of the Nrf2 and nuclear factor- κB (NF-κB) pathways.


Subject(s)
Antioxidant Response Elements , Chalcones/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Chalcones/chemistry , Humans
17.
Cells ; 7(7)2018 Jul 22.
Article in English | MEDLINE | ID: mdl-30037128

ABSTRACT

Transient receptor potential (TRP) proteins have been implicated in several cell functions as non-selective cation channels, with about 30 different mammalian TRP channels having been recognized. Among them, TRP-melastatin 2 (TRPM2) is particularly involved in the response to oxidative stress and inflammation, while its activity depends on the presence of intracellular calcium (Ca2+). TRPM2 is involved in several physiological and pathological processes in the brain through the modulation of multiple signaling pathways. The aim of the present review is to provide a brief summary of the current insights of TRPM2 role in health and disease to focalize our attention on future potential neuroprotective strategies.

18.
Int J Mol Sci ; 19(7)2018 Jul 18.
Article in English | MEDLINE | ID: mdl-30021941

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia among older people. Although soluble amyloid species are recognized triggers of the disease, no therapeutic approach is able to stop it. 6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in Wasabia japonica, which is a typical Japanese pungent spice. Recently, in vivo and in vitro studies demonstrated that 6-MSITC has several biological properties. The aim of the present study was to investigate the neuroprotective activity of 6-MSITC in a murine AD model, induced by intracerebroventricular injection of ß-amyloid oligomers (Aß1-42O). The treatment with 6-MSITC started 1 h after the surgery for the next 10 days. Behavioral analysis showed that 6-MSITC ameliorated Aß1-42O-induced memory impairments. The decrease of glutathione levels and increase of reactive oxygen species in hippocampal tissues following Aß1-42O injection were reduced by 6-MSITC. Moreover, activation of caspases, increase of inflammatory factors, and phosphorylation of ERK and GSK3 were inhibited by 6-MSITC. These results highlighted an interesting neuroprotective activity of 6-MSITC, which was able to restore a physiological oxidative status, interfere positively with Nrf2-pathway, decrease apoptosis and neuroinflammation and contribute to behavioral recovery. Taken together, these findings demonstrated that 6-MSITC could be a promising complement for AD therapy.


Subject(s)
Amyloid beta-Peptides/toxicity , Apoptosis , Cognition Disorders/drug therapy , Cognition Disorders/pathology , Inflammation/drug therapy , Isothiocyanates/therapeutic use , Neuroprotective Agents/therapeutic use , Oxidative Stress , Animals , Apoptosis/drug effects , Caspases/metabolism , Cell Death/drug effects , Cognition Disorders/complications , Extracellular Signal-Regulated MAP Kinases/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Inflammation/complications , Inflammation/pathology , Isothiocyanates/chemistry , Isothiocyanates/pharmacology , Mice , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Oxidation-Reduction , Oxidative Stress/drug effects , Phosphorylation/drug effects
19.
Oncotarget ; 9(36): 24443-24456, 2018 May 11.
Article in English | MEDLINE | ID: mdl-29849952

ABSTRACT

The ability of anticancer treatments to promote the activation of tumor-reactive adaptive immune responses is emerging as a critical requirement underlying their clinical effectiveness. We investigated the ability of Hemidesmus indicus, a promising anticancer botanical drug, to stimulate immunogenic cell death in a human colorectal cancer cell line (DLD1). Here we show that Hemidesmus treatment induces tumor cell cytotoxicity characterized by surface expression of calreticulin, increased HSP70 expression and release of ATP and HMGB1. Remarkably, the exposure to released ICD-inducer factors from Hemidesmus-treated DLD1 cells caused a modest induction of CD14-derived dendritic cells maturation, as demonstrated by the increased expression of CD83. Moreover, at sub-toxic concentrations, H.i. treatment of monocytes and dendritic cells induced their mild activation, suggesting its additional direct immunostimulatory activity. These data indicate that Hemidesmus indicus induces immunogenic cell death in human tumor cells and suggest its potential relevance in innovative cancer immunotherapy protocols.

20.
J Agric Food Chem ; 66(4): 856-865, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29307179

ABSTRACT

Several studies suggest that an increase of glutathione (GSH) through activation of the transcriptional nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in the dopaminergic neurons may be a promising neuroprotective strategy in Parkinson's disease (PD). Among Nrf2 activators, isothiocyanate sulforaphane (SFN), derived from precursor glucosinolate present in Brassica vegetables, has gained attention as a potential neuroprotective compound. Bioavailability studies also suggest the contribution of SFN metabolites, including erucin (ERN), to the neuroprotective effects of SFN. Therefore, we compared the in vitro neuroprotective effects of SFN and ERN at the same dose level (5 µM) and oxidative treatment with 6-hydroxydopamine (6-OHDA) in SH-SY5Y cells. The pretreatment of SH-SY5Y cells with SFN recorded a higher (p < 0.05) active nuclear Nrf2 protein (12.0 ± 0.4 vs 8.0 ± 0.2 fold increase), mRNA Nrf2 (2.0 ± 0.3 vs 1.4 ± 0.1 fold increase), total GSH (384.0 ± 9.0 vs 256.0 ± 8.0 µM) levels, and resistance to neuronal apoptosis elicited by 6-OHDA compared to ERN. By contrast, the simultaneous treatment of SH-SY5Y cells with either SFN or ERN and 6-OHDA recorded similar neuroprotective effects with both the isothiocyanates (Nrf2 protein 2.2 ± 0.2 vs 2.1 ± 0.1 and mRNA Nrf2 2.1 ± 0.3 vs 1.9 ± 0.2 fold increase; total GSH 384.0 ± 4.8 vs 352.0 ± 6.4 µM). Finally, in vitro finding was confirmed in a 6-OHDA-PD mouse model. The metabolic oxidation of ERN to SFN could account for their similar neuroprotective effects in vivo, raising the possibility of using vegetables containing a precursor of ERN for systemic antioxidant benefits in a similar manner to SFN.


Subject(s)
Dopaminergic Neurons/drug effects , Isothiocyanates/pharmacology , Neuroprotective Agents/pharmacology , Parkinson Disease/prevention & control , Sulfides/pharmacology , Thiocyanates/pharmacology , Animals , Brassica/chemistry , Cell Line, Tumor , Dopaminergic Neurons/chemistry , Glutathione/analysis , Humans , Isothiocyanates/metabolism , Isothiocyanates/therapeutic use , Male , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/analysis , NF-E2-Related Factor 2/genetics , Neuroblastoma , Neuroprotective Agents/therapeutic use , Oxidation-Reduction , Oxidopamine/administration & dosage , RNA, Messenger/analysis , Sulfides/metabolism , Sulfides/therapeutic use , Sulfoxides , Thiocyanates/metabolism , Thiocyanates/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...