Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(28): 33838-33847, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37418753

ABSTRACT

Van der Waals heterostructures (vdWHSs) enable the fabrication of complex electronic devices based on two-dimensional (2D) materials. Ideally, these vdWHSs should be fabricated in a scalable and repeatable way and only in the specific areas of the substrate to lower the number of technological operations inducing defects and impurities. Here, we present a method of selective fabrication of vdWHSs via chemical vapor deposition by electron-beam (EB) irradiation. We distinguish two growth modes: positive (2D materials nucleate on the irradiated regions) on graphene and tungsten disulfide (WS2) substrates, and negative (2D materials do not nucleate on the irradiated regions) on the graphene substrate. The growth mode is controlled by limiting the air exposure of the irradiated substrate and the time between irradiation and growth. We conducted Raman mapping, Kelvin-probe force microscopy, X-ray photoelectron spectroscopy, and density-functional theory modeling studies to investigate the selective growth mechanism. We conclude that the selective growth is explained by the competition of three effects: EB-induced defects, adsorption of carbon species, and electrostatic interaction. The method here is a critical step toward the industry-scale fabrication of 2D-materials-based devices.

2.
Nanotoxicology ; 16(5): 610-628, 2022 06.
Article in English | MEDLINE | ID: mdl-36170236

ABSTRACT

The study concerns the influence of graphene monolayer, as a 2 D platform, on cell viability, cytoskeleton, adhesions sites andmorphology of mitochondria of keratinocytes (HaCaT) under static conditions. Based on quantitative and immunofluorescent analysis, it could be stated that graphene substrate does not cause any damage to membrane or disruption of other monitored parameters. Spindle poles and cytokinesis bridges indicating proliferation of cells on this graphene substrate were detected. Moreover, the keratinocyte migration rate on the graphene substrate was comparable to control glass substrate when the created wound was completely closed after 38 hours. HaCaT morphology and viability were also assessed under dynamic conditions (lab on a chip - micro scale). For this purpose, microfluidic graphene system was designed and constructed. No differences as well as no anomalies were observed during cultivation of these cells on the graphene or glass substrates in relation to cultivation conditions: static (macro scale) and dynamic (micro scale). Only natural percentage of dead cells was determined using different methods, which proved that the graphene as the 2 D platform is cytocompatible with keratinocytes. The obtained results encourage the use of the designed lab on a chip system in toxicity testing of graphene also on other cells and further research on the use of graphene monolayers to produce bio-bandages for skin wounds in animal tests.


Subject(s)
Graphite , Animals , Humans , Graphite/toxicity , HaCaT Cells , Keratinocytes/metabolism , Cell Movement , Cell Survival , Cell Proliferation
3.
ACS Appl Mater Interfaces ; 12(40): 45101-45110, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32930568

ABSTRACT

In this work, we report the impact of substrate type on the morphological and structural properties of molybdenum disulfide (MoS2) grown by chemical vapor deposition (CVD). MoS2 synthesized on a three-dimensional (3D) substrate, that is, SiO2, in response to the change of the thermodynamic conditions yielded different grain morphologies, including triangles, truncated triangles, and circles. Simultaneously, MoS2 on graphene is highly immune to the modifications of the growth conditions, forming triangular crystals only. We explain the differences between MoS2 on SiO2 and graphene by the different surface diffusion mechanisms, namely, hopping and gas-molecule-collision-like mechanisms, respectively. As a result, we observe the formation of thermodynamically favorable nuclei shapes on graphene, while on SiO2, a full spectrum of domain shapes can be achieved. Additionally, graphene withstands the growth process well, with only slight changes in strain and doping. Furthermore, by the application of graphene as a growth substrate, we realize van der Waals epitaxy and achieve strain-free growth, as suggested by the photoluminescence (PL) studies. We indicate that PL, contrary to Raman spectroscopy, enables us to arbitrarily determine the strain levels in MoS2.

4.
Phys Chem Chem Phys ; 20(20): 13890-13895, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29741186

ABSTRACT

Further development of GaN/AlGaN based optoelectronic devices requires optimization of the p-type material growth process. In particular, uncontrolled diffusion of Mg dopants may decrease the performance of a device. Thus it is meaningful to study the behavior of Mg and the origins of its diffusion in detail. In this work we have employed secondary ion mass spectrometry to study the diffusion of magnesium in GaN/AlGaN structures. We show that magnesium has a strong tendency to form Mg-H complexes which immobilize Mg atoms and restrain their diffusion. However, these complexes are not present in samples post-growth annealed in an oxygen atmosphere or Al-rich AlGaN structures which naturally have a high oxygen concentration. In these samples, more Mg atoms are free to diffuse and thus the average diffusion length is considerably larger than for a sample annealed in an inert atmosphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...