Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(3)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38235800

ABSTRACT

Increasingly, society requires high power, high energy storage devices for applications ranging from electric vehicles to buffers on the electric grid. Supercapacitors are a promising contribution to meeting these demands, though there still remain unsolved practical problems. Molecular dynamics simulations can shed light on the relevant molecular level processes in electric double layer capacitors, but these simulations are computationally very demanding. Our focus here is on the algorithmic complexity of the constant potential method (CPM), which uses dedicated electrostatics solvers to maintain a fixed potential difference between two conducting electrodes. We show how any standard electrostatics solver-capable of calculating the energies and forces on all atoms-can be used to implement CPM with a minimum of coding. As an example, we compare our generalized implementation of CPM, based on invocations of the particle-particle-particle-mesh routine of the Large-scale Atomic/Molecular Massively Parallel Simulator, with a traditional implementation based on a dedicated re-implementation of Ewald summation. Both methods yield comparable results on four test systems, with the former achieving a substantial gain in speed and improved scalability. The step from dedicated electrostatic solvers to generic routines is made possible by noting that CPM's traditional narrow Gaussian point-spread of atomic charges on the electrodes effectively endows point-like atoms with chemical hardness, i.e., an intra-atomic energy quadratic in the charge.

2.
J Chem Phys ; 160(4)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38275193

ABSTRACT

As the world moves more toward unpredictable renewable energy sources, better energy storage devices are required. Supercapacitors are a promising technology to meet the demand for short-term, high-power energy storage. Clearly, understanding their charging and discharging behaviors is essential to improving the technology. Molecular Dynamics (MD) simulations provide microscopic insights into the complex interplay between the dynamics of the ions in the electrolyte and the evolution of the charge distributions on the electrodes. Traditional MD simulations of (dis)charging supercapacitors impose a pre-determined evolving voltage difference between the electrodes, using the Constant Potential Method (CPM). Here, we present an alternative method that explicitly simulates the charge flow to and from the electrodes. For a disconnected capacitor, i.e., an open circuit, the charges are allowed to redistribute within each electrode while the sum charges on both electrodes remain constant. We demonstrate, for a model capacitor containing an aqueous salt solution, that this method recovers the charge-potential curve of CPM simulations. The equilibrium voltage fluctuations are related to the differential capacitance. We next simulate a closed circuit by introducing equations of motion for the sum charges, by explicitly accounting for the external circuit element(s). Charging and discharging of the model supercapacitor via a resistance proceed by double exponential processes, supplementing the usual time scale set by the electrolyte dynamics with a novel time scale set by the external circuit. Finally, we propose a simple equivalent circuit that reproduces the main characteristics of this supercapacitor.

SELECTION OF CITATIONS
SEARCH DETAIL
...