Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 36(1): 407-416, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222938

ABSTRACT

Herein, we introduce a new methodology for designing transient organogels that offers tunability of the mechanical properties simply by matching the protective groups of the precursor to that of the solvent. We developed solvent-induced transient materials in which the solvent chemically participates in a set of reactions and actively supports the assembly event. The activation of a single precursor by an acid (accelerator) yields the formation of two distinct gelators and induces gelation. The interconversion cycle is supplied by the secondary solvent (originating from hydrolysis of the primary solvent by the accelerator), which then progressively solubilizes the gel network. We show that this gelation method offers a direct correlation between the mechanical and transient properties by modifying the chemical structure of the precursors and the presence of an accelerator in the system. Such a method paves the way for the design of self-abolishing and mechanically tunable materials for targeted purposes. The biocompatibility and versatility of amino acid-based gelators can offer a wide range of biomaterials for applications requiring a controllable and definite lifetime such as drug delivery platforms exhibiting a burst release or self-abolishing cell culture substrates.

2.
ACS Omega ; 8(11): 10225-10234, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36969436

ABSTRACT

The N-fluorenyl-9-methyloxycarbonyl (Fmoc)-protected amino acids have shown high antimicrobial application potential, among which the phenylalanine derivative (Fmoc-F) is the most well-known representative. However, the activity spectrum of Fmoc-F is restricted to Gram-positive bacteria only. The demand for efficient antimicrobial materials expanded research into graphene and its derivatives, although the reported results are somewhat controversial. Herein, we combined graphene oxide (GO) flakes with Fmoc-F amino acid to form Fmoc-F/GO hybrid hydrogel for the first time. We studied the synergistic effect of each component on gelation and assessed the material's bactericidal activity on Gram-negative Escherichia coli (E. coli). GO flakes do not affect Fmoc-F self-assembly per se but modulate the elasticity of the gel and speed up its formation. The hybrid hydrogel affects E. coli survival, initially causing abrupt bacterial death followed by the recovery of the surviving ones due to the inoculum effect (IE). The combination of graphene with amino acids is a step forward in developing antimicrobial gels due to their easy preparation, chemical modification, graphene functionalization, cost-effectiveness, and physicochemical/biological synergy of each component.

3.
Phys Chem Chem Phys ; 25(12): 8725-8733, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36896827

ABSTRACT

We report the effects of a laser-oxidized single layer graphene (SLG) surface on the self-assembly of amphiphilic gelator N-fluorenylmethoxycarbonyl-L-phenylalanine (Fmoc-Phe) towards an gel-SLG interface. Laser oxidation modulates the levels of hydrophobicity/hydrophilicity on the SLG surface. Atomic force, scanning electron, helium ion and scattering scanning nearfield optical microscopies (AFM, SEM, HIM, s-SNOM) were employed to assess the effects of surface properties on the secondary and tertiary organization of the formed Fmoc-Phe fibres at the SLG-gel interface. S-SNOM shows sheet-like secondary structures on both hydrophobic/hydrophilic areas of SLG and helical or disordered structures mainly on the hydrophilic oxidized surface. The gel network heterogeneity on pristine graphene was observed at the scale of single fibres by s-SNOM, demonstrating its power as a unique tool to study supramolecular assemblies and interfaces at nanoscale. Our findings underline the sensitivity of assembled structures to surface properties, while our characterization approach is a step forward in assessing surface-gel interfaces for the development of bionic devices.

4.
Chemistry ; 29(32): e202300155, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-36919896

ABSTRACT

The design of soft biomaterials requires a deep understanding of molecular self-assembly. Here a nanoscale infrared (IR) spectroscopy study of a two-component supramolecular gel is introduced to assess the system's heterogeneity and supramolecular assembly. In contrast to far-field IR spectroscopy, near-field IR spectroscopy revealed differences in the secondary structures of the gelator molecules and non-covalent interactions at three distinct nano-locations of the gel network. A ß-sheet arrangement is dominant in single and parallel fibres with a small proportion of an α-helix present, while the molecular assembly derives from strong hydrogen bonding. However, at the crossing point of two fibres, only the ß-sheet motif is observed, with an intense π-π stacking contribution. Near-field nanospectroscopy can become a powerful tool for the nanoscale distinction of non-covalent interactions, while it is expected to advance the existing spectroscopic assessments of supramolecular gels.


Subject(s)
Biocompatible Materials , Spectroscopy, Near-Infrared , Spectrophotometry, Infrared , Protein Structure, Secondary , Gels/chemistry
5.
Chem Commun (Camb) ; 57(80): 10375-10378, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34541596

ABSTRACT

A transient organo-gelation system with spatiotemporal dynamic properties is described. Here, the solvent actively controls a complex set of equilibria that underpin the dynamic assembly event. The observed metastability is due to the in situ formation of a secondary solvent, acting as an antagonist against the primary solvent of the organogel.

6.
Nanoscale Adv ; 3(7): 2065-2074, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-36133099

ABSTRACT

An approach for controlled protein immobilization on laser-induced two-photon (2P) oxidation patterned graphene oxide (GO) surfaces is described. Selected proteins, horseradish peroxidase (HRP) and biotinylated bovine serum albumin (b-BSA) were successfully immobilized on oxidized graphene surfaces, via non-covalent interactions, by immersion of graphene-coated microchips in the protein solution. The effects of laser pulse energy, irradiation time, protein concentration and duration of incubation on the topography of immobilized proteins and consequent defects upon the lattice of graphene were systemically studied by atomic force microscopy (AFM) and Raman spectroscopy. AFM and fluorescence microscopy confirmed the selective aggregation of protein molecules towards the irradiated areas. In addition, the attachment of b-BSA was detected by a reaction with fluorescently labelled avidin-fluorescein isothiocyanate (Av-FITC). In contrast to chemically oxidized graphene, laser-induced oxidation introduces the capability for localization on oxidized areas and tunability of the levels of oxidation, resulting in controlled guidance of proteins by light over graphene surfaces and progressing towards graphene microchips suitable for biomedical applications.

7.
Chirality ; 30(6): 708-718, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29645307

ABSTRACT

Circular dichroism (CD) spectroscopy has been used extensively for the investigation of the conformation and configuration of chiral molecules, but its use for evaluating the mode of self-assembly in soft materials has been limited. Herein, we report a protocol for the study of such materials by electronic CD spectroscopy using commercial/benchtop instruments and synchrotron radiation (SR) using the B23 beamline available at Diamond Light Source. The use of the B23 beamtime for SRCD was advantageous because of the unique enhanced spatial resolution achieved because of its highly collimated and small beamlight cross section (ca. 250 µm) and higher photon flux in the far UV region (175-250 nm) enhancing the signal-to-noise ratio relative to benchtop CD instruments. A set of low molecular weight (LMW) hydrogelators, comprising two Fmoc-protected enantiomeric monosaccharides and one Fmoc dipeptide (Fmoc-FF), were studied. The research focused on the optimization of sample preparation and handling, which then enabled the characterization of sample conformational homogeneity and thermal stability. CD spectroscopy, in combination with other spectroscopic techniques and microscopy, will allow a better insight into the self-assembly of chiral building blocks into higher order structural architectures.

8.
Org Biomol Chem ; 14(8): 2504-14, 2016 Feb 28.
Article in English | MEDLINE | ID: mdl-26818818

ABSTRACT

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca(2+) channels that are widely expressed in animal cells, where they mediate the release of Ca(2+) from intracellular stores evoked by extracellular stimuli. A diverse array of synthetic agonists of IP3Rs has defined structure-activity relationships, but existing antagonists have severe limitations. We combined analyses of Ca(2+) release with equilibrium competition binding to IP3R to show that (1,3,4,6)IP4 is a full agonist of IP3R1 with lower affinity than (1,4,5)IP3. Systematic manipulation of this meso-compound via a versatile synthetic scheme provided a family of dimeric analogs of 2-O-butyryl-(1,3,4,6)IP4 and (1,3,4,5,6)IP5 that compete with (1,4,5)IP3 for binding to IP3R without evoking Ca(2+) release. These novel analogs are the first inositol phosphate-based competitive antagonists of IP3Rs with affinities comparable to that of the only commonly used competitive antagonist, heparin, the utility of which is limited by off-target effects.


Subject(s)
Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors , Inositol Phosphates/chemistry , Inositol Phosphates/pharmacology , Animals , Chickens , Dose-Response Relationship, Drug , Inositol Phosphates/chemical synthesis , Models, Molecular , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...