Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 6(3)2016 Aug 20.
Article in English | MEDLINE | ID: mdl-27556494

ABSTRACT

In recent years, biodiesel, a substitute for fossil fuels, has led to the excessive production of crude glycerol. The resulting crude glycerol can possess a high concentration of salts and an alkaline pH. Moreover, current crude glycerol purification methods are expensive, rendering this former commodity a waste product. However, Halanaerobium hydrogeniformans, a haloalkaliphilic bacterium, possesses the metabolic capability to convert glycerol into 1,3-propanediol, a valuable commodity compound, without the need for salt dilution or adjusting pH when grown on this waste. Experiments were performed with different combinations of 24 medium components to determine their impact on the production of 1,3-propanediol by using a fractional factorial design. Tested medium components were selected based on data from the organism's genome. Analysis of HPLC data revealed enhanced production of 1,3-propanediol with additional glycerol, pH, vitamin B12, ammonium ions, sodium sulfide, cysteine, iron, and cobalt. However, other selected components; nitrate ions, phosphate ions, sulfate ions, sodium:potassium ratio, chloride, calcium, magnesium, silicon, manganese, zinc, borate, nickel, molybdenum, tungstate, copper and aluminum, did not enhance 1,3-propanediol production. The use of a fractional factorial design enabled the quick and efficient assessment of the impact of 24 different medium components on 1,3-propanediol production from glycerol from a haloalkaliphilic bacterium.

2.
Front Microbiol ; 3: 93, 2012.
Article in English | MEDLINE | ID: mdl-22509174

ABSTRACT

Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobiumhydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6-carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate, and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

3.
Langmuir ; 22(10): 4741-4, 2006 May 09.
Article in English | MEDLINE | ID: mdl-16649790

ABSTRACT

Modulated differential scanning calorimetry has been used to quantify the glass transitions of small adsorbed amounts of poly(methyl methacrylate) (PMMA) on silica. While a relatively narrow, single glass transition was found for bulk PMMA, broader two-component transitions were found for the adsorbed polymer. A two-state model based on loosely bound polymer (glass transition similar to bulk) and more tightly bound polymer (glass transition centered around 156 degrees C) was used to interpret the thermograms. On the basis of this model, the amount of tightly bound polymer was found to be approximately 1.3 mg/m2, corresponding to a 1.1 nm thick layer. The change in heat capacity for the tightly bound polymer at the glass transition temperature was estimated to be about 16% of that of the bulk polymer.

SELECTION OF CITATIONS
SEARCH DETAIL
...