Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 12(22)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36428353

ABSTRACT

Physical pellet quality and AMEN concentration are strongly related to each other in broiler feeding. A study was conducted to evaluate the relationship between dietary AMEN concentration and feed processing on pellet quality, nutrient digestibility, broiler performance, serum markers, and yield of commercial cuts. Six diets were formulated. The first diet had the recommended AMEN concentration, each further diet was calculated with 40 kcal/kg less, from 0 to −200 kcal/kg, resulting in six levels for each feed phase: starter (1−14 d), grower (15−28 d), and finisher (29−35 d). These diets were processed with and without expander conditioning prior to pelleting, using an average corn particle size of 1.6 mm, ground with a roller mill. A total of 1008 one-day-old male Ross 308 broiler chickens were placed in a 6 × 2 (6 energy levels and 2 conditionings) factorial trial with six boxes as replications, with three in each broiler performance trial period. Excreta were collected 2 days before the end of each feed phase for apparent total tract digestibility measurement. On day 36, four broilers from each replication (pen) were weighed and then euthanized for blood collection, following which the gastrointestinal organs were weighed, and the ileal and gizzard contents were collected. On day 37, all remaining broilers were slaughtered after fasting to measure commercial cuts and abdominal fat. The results show that the pellet durability index (PDI) was most affected by energy reducing and expander conditioning prior to pelleting, and it was better when diets had energy reduced by 40 to 200 kcal/kg (p > 0.001), as when expander conditioning was used. Digestibility of nutrients was slightly affected by treatments, as was the broiler performance; however, feed efficiency was improved in broiler-fed diets without AMEN reduction and when an expander was used, with p = 0.050 and p = 0.031, respectively. No effects were observed on the weight of gastrointestinal tract organs and serum markers, except for liver (p = 0.037) and α-amylase (p = 0.047). The lowest liver weight and lowest serum protein, cholesterol, triglyceride, gamma-glutamyl, and lipase concentrations were obtained when diets were formulated without energy reduction (Ross-0). There was no effect on commercial cuts relative to live weight at slaughter. The energy reduction was well reflected in the proportion of abdominal fat, which decreased when AMEN was reduced (p = 0.001). The present study shows it is possible to use diets with up to 200 kcal/kg reduction in AMEN without losses in performance, and the use of expander conditioning prior to pelleting promotes higher pellet quality and broiler feed efficiency.

2.
Animals (Basel) ; 12(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36230448

ABSTRACT

During the processing of compound feed for broilers, several changes occur that affect the physical and probably the nutritional properties of pellets, influencing animal performance. The effects of mill type, particle size (PS) and expander conditioning prior to pelleting (E + P) were combined to generate pellets. A 2 × 3 × 2 factorial arrangement was designed with two mill types (a hammer mill (HM) or roller mill (RM)), three PSs (0.8, 1.2 or 1.6 mm) and two E + Ps (with or without expander processing prior to pelleting), with six replications of 12 unsexed Ross 308 broilers each. All the processing lines reduced the PS from mash to finished pellets via secondary grinding, by 2.35 times on average. However, RM grinding required less electric power (p < 0.001). The intended PS (0.8, 1.2 or 1.6 mm) did not affect this energy consumption. E + P and the PS interacted for the pellet durability index (PDI) (p = 0.006). The worst PDI in the pellets was observed when a PS of 1.6 mm without E + P was used. Only E + P positively affected starch (p < 0.001) and amino acids' ileal apparent digestibility (p < 0.01). Organic matter (OM) (p = 0.02) and fat (p < 0.001) digestibility, as well as AMEN (p = 0.005) content, were influenced by the PS (main effect), whereas E + P and mill type interacted with these values (p < 0.005). Lower OM digestibility and AMEN content were observed when RM without E + P was used (p = 0.001). The feed conversion ratio (FCR) was enhanced and feed intake (FI) was improved with E + P. The combination of the RM mill, a 1.6 mm mean PS, and E + P improved FCR (three-way interaction, p = 0.019)), showing that for a higher PS, E + P is necessary for animal performance. Carcass yield was, on average, 80.1%. No effects on commercial cuts (breast, legs and wings) were observed. In contrast, abdominal fat was affected by mill type * PS (p = 0.012) and E + P * PS (p = 0.048) in a two-way interaction. The highest abdominal fat indicated an imbalance in the amino acid (AA)-to-AMEN ratio. Coarse PS promoted heavier gizzards (p = 0.02) but E + P tended to reduce them (p = 0.057). The processing steps improved pellet quality and feed efficiency associated with RM, coarse PS and E + P, highlighting the positive effects of E + P on abdominal fat and AMEN content, which should be adjusted to AA or reduced at formulation. However, these results are for an experimental processing plant and may not necessarily apply to larger plants, so the use of these data and methods should be considered as guidelines for replication at production sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...