Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 85(6): 1569-1580, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35694811

ABSTRACT

Neuropeptides are a group of neuronal signaling molecules that regulate physiological and behavioral processes in animals. Here, we used in silico mining to predict the polypeptide composition of available transcriptomic data of Turbinaria peltata. In total, 118 transcripts encoding putative peptide precursors were discovered. One neuropeptide Y/F-like peptide, named TpNPY, was identified and selected for in silico structural, in silico binding, and pharmacological studies. In our study, the anti-inflammation effect of TpNPY was evaluated using an LPS-stimulated C8-D1A astrocyte cell model. Our results demonstrated that TpNPY, at 0.75-3 µM, inhibited LPS-induced NO production and reduced the expression of iNOS in a dose-dependent manner. Furthermore, TpNPY reduced the secretion of proinflammatory cytokines. Additionally, treatment with TpNPY reduced LPS-mediated elevation of ROS production and the intracellular calcium concentration. Further investigation revealed that TpNPY downregulated the IKK/IκB/NF-κB signaling pathway and inhibited expression of the NLRP3 inflammasome. Through molecular docking and using an NPY receptor antagonist, TpNPY was shown to have the ability to interact with the NPY Y1 receptor. On the basis of these findings, we concluded that TpNPY might prevent LPS-induced injury in astrocytes through activation of the NPY-Y1R.


Subject(s)
Neuropeptide Y , Neuropeptides , Animals , Astrocytes , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Neuropeptide Y/chemistry , Neuropeptide Y/pharmacology , Transcriptome
2.
Arch Toxicol ; 96(9): 2589-2608, 2022 09.
Article in English | MEDLINE | ID: mdl-35604417

ABSTRACT

Approximately 50 million people are suffering from epilepsy worldwide. Corals have been used for treating epilepsy in traditional Chinese medicine, but the mechanism of this treatment is unknown. In this study, we analyzed the transcriptome of the branching coral Acropora digitifera and obtained its Kyoto Encyclopedia of Genes and Genomes (KEGG), EuKaryotic Orthologous Groups (KOG) and Gene Ontology (GO) annotation. Combined with multiple sequence alignment and phylogenetic analysis, we discovered three polypeptides, we named them AdKuz1, AdKuz2 and AdKuz3, from A. digitifera that showed a close relationship to Kunitz-type peptides. Molecular docking and molecular dynamics simulation indicated that AdKuz1 to 3 could interact with GABAA receptor but AdKuz2-GABAA remained more stable than others. The biological experiments showed that AdKuz1 and AdKuz2 exhibited an anti-inflammatory effect by decreasing the aberrant level of nitric oxide (NO), IL-6, TNF-α and IL-1ß induced by LPS in BV-2 cells. In addition, the pentylenetetrazol (PTZ)-induced epileptic effect on zebrafish was remarkably suppressed by AdKuz1 and AdKuz2. AdKuz2 particularly showed superior anti-epileptic effects compared to the other two peptides. Furthermore, AdKuz2 significantly decreased the expression of c-fos and npas4a, which were up-regulated by PTZ treatment. In addition, AdKuz2 reduced the synthesis of glutamate and enhanced the biosynthesis of gamma-aminobutyric acid (GABA). In conclusion, the results indicated that AdKuz2 may affect the synthesis of glutamate and GABA and enhance the activity of the GABAA receptor to inhibit the symptoms of epilepsy. We believe, AdKuz2 could be a promising anti-epileptic agent and its mechanism of action should be further investigated.


Subject(s)
Anthozoa , Animals , Anthozoa/chemistry , Anthozoa/genetics , Anticonvulsants/pharmacology , Glutamates/genetics , Humans , Molecular Docking Simulation , Pentylenetetrazole , Peptides/genetics , Phylogeny , Receptors, GABA-A/genetics , Transcriptome , Zebrafish/genetics , gamma-Aminobutyric Acid
3.
Front Pharmacol ; 12: 763089, 2021.
Article in English | MEDLINE | ID: mdl-34925021

ABSTRACT

PcActx peptide, identified from the transcriptome of zoantharian Palythoa caribaeorum, was clustered into the phylogeny of analgesic polypeptides from sea anemone Heteractis crispa (known as APHC peptides). APHC peptides were considered as inhibitors of transient receptor potential cation channel subfamily V member 1 (TRPV1). TRPV1 is a calcium-permeable channel expressed in epileptic brain areas, serving as a potential target for preventing epileptic seizures. Through in silico and in vitro analysis, PcActx peptide was shown to be a potential TRPV1 channel blocker. In vivo studies showed that the linear and oxidized PcActx peptides caused concentration-dependent increases in mortality of zebrafish larvae. However, monotreatment with PcActx peptides below the maximum tolerated doses (MTD) did not affect locomotor behavior. Moreover, PcActx peptides (both linear and oxidized forms) could effectively reverse pentylenetetrazol (PTZ)-induced seizure-related behavior in zebrafish larvae and prevent overexpression of c-fos and npas4a at the mRNA level. The excessive production of ROS induced by PTZ was markedly attenuated by both linear and oxidized PcActx peptides. It was also verified that the oxidized PcActx peptide was more effective than the linear one. In particular, oxidized PcActx peptide notably modulated the mRNA expression of genes involved in calcium signaling and γ-aminobutyric acid (GABA)ergic-glutamatergic signaling, including calb1, calb2, gabra1, grm1, gria1b, grin2b, gat1, slc1a2b, gad1b, and glsa. Taken together, PcActx peptide, as a novel neuroactive peptide, exhibits prominent anti-epileptic activity, probably through modulating calcium signaling and GABAergic-glutamatergic signaling, and is a promising candidate for epilepsy management.

4.
Arch Toxicol ; 93(6): 1745-1767, 2019 06.
Article in English | MEDLINE | ID: mdl-31203412

ABSTRACT

Venoms from marine animals have been recognized as a new emerging source of peptide-based therapeutics. Several peptide toxins from sea anemone have been investigated as therapeutic leads or pharmacological tools. Venom complexity should be further highlighted using combined strategies of large-scale sequencing and data analysis which integrated transcriptomics and proteomics to elucidate new proteins or peptides to be compared among species. In this work, transcriptomic and proteomic analyses were combined to identify six groups of expressed peptide toxins in Zoanthus natalensis. These include neurotoxin, hemostatic and hemorrhagic toxin, protease inhibitor, mixed function enzymes, venom auxiliary proteins, allergen peptides, and peptides related to the innate immunity. Molecular docking analysis indicated that one expressed Zoanthus Kunitz-like peptide, ZoaKuz1, could be a voltage-gated potassium channels blocker and, hence, it was selected for functional studies. Functional bioassays revealed that ZoaKuz1 has an intrinsic neuroprotective activity in zebrafish model of Parkinson's disease. Since pharmacological blockade of KV channels is known to induce neuroprotective effects, ZoaKuz1 holds the potential to be developed in a therapeutic tool to control neural dysfunction by slowing or even halting neurodegeneration mediated by ion-channel hyperactivity.


Subject(s)
Cnidarian Venoms/genetics , Cnidarian Venoms/toxicity , Peptides/genetics , Peptides/toxicity , Proteomics , Sea Anemones/genetics , Transcriptome , Allergens/genetics , Allergens/toxicity , Animals , Antiparkinson Agents/pharmacology , Hemostatics , Humans , Molecular Docking Simulation , Neuroprotective Agents/pharmacology , Neurotoxins/genetics , Neurotoxins/toxicity , Potassium Channel Blockers/pharmacology , Protease Inhibitors/pharmacology , Protein Folding , Zebrafish
5.
Arch Toxicol ; 93(1): 189-206, 2019 01.
Article in English | MEDLINE | ID: mdl-30334080

ABSTRACT

We previously reported a novel toxic peptide identified from the anthozoan Protopalythoa variabilis transcriptome which is homologous to a novel structural type of sodium channel toxin isolated from a parental species (Palythoa caribaeorum). The peptide was named, according to its homologous, as Pp V-shape α-helical peptide (PpVα) in the present study. Through molecular docking and dynamics simulation, linear and hairpin folded PpVα peptides were shown to be potential voltage-gated sodium channel blockers. Nowadays, sodium channel blockers have been the mainstream of the pharmacological management of epileptic seizures. Also, sodium channel blockers could promote neuronal survival by reducing sodium influx and reducing the likelihood of calcium importation resulting in suppressing microglial activation and protecting dopaminergic neurons from degeneration. The folded PpVα peptide could decrease pentylenetetrazol (PTZ)-induced c-fos and npas4a expression level leading to reverse PTZ-induced locomotor hyperactivity in zebrafish model. In vitro, the folded PpVα peptide protected PC12 cells against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity via activating heme oxygenase-1 (HO-1) and attenuating inducible nitric oxide synthase (iNOS) expression. In vivo, PpVα peptide suppressed the 6-OHDA-induced neurotoxicity on the locomotive behavior of zebrafish and, importantly, prevented the 6-OHDA-induced excessive ROS generation and subsequent dopaminergic neurons loss. This study indicates that the single S-S bond folded PpVα peptide arises as a new structural template to develop sodium channel blockers and provides an insight on the peptide discovery from cnidarian transcriptome to potentially manage epilepsy and neurodegenerative disorders.


Subject(s)
Anthozoa/chemistry , Anticonvulsants/pharmacology , Neuroprotective Agents/pharmacology , Peptides/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channels/metabolism , Amino Acid Sequence , Animals , Heme Oxygenase (Decyclizing)/metabolism , Locomotion , Molecular Docking Simulation , Molecular Dynamics Simulation , Nitric Oxide Synthase Type II/metabolism , Oxidopamine/adverse effects , PC12 Cells , Pentylenetetrazole/adverse effects , Peptides/chemical synthesis , Protein Structure, Tertiary , Rats , Reactive Oxygen Species/metabolism , Zebrafish
6.
Toxins (Basel) ; 10(6)2018 06 12.
Article in English | MEDLINE | ID: mdl-29895785

ABSTRACT

Palythoa caribaeorum (class Anthozoa) is a zoantharian which, together with other cnidarians, like jellyfishes, hydra, and sea anemones, possesses specialized structures in its tissues, the cnidocytes, which deliver an array of toxins in order to capture prey and deter predators. The whole transcriptome of P. caribaeroum was deep sequenced, and a diversity of toxin-related peptide sequences were identified, and some retrieved for functional analysis. In this work, a peptide precursor containing a ShK domain, named PcShK3, was analyzed by means of computational processing, comprising structural phylogenetic analysis, model prediction, and dynamics simulation of peptide-receptor interaction. The combined data indicated that PcShK3 is a distinct peptide which is homologous to a cluster of peptides belonging to the ShK toxin family. In vivo, PcShK3 distributed across the vitelline membrane and accumulated in the yolk sac stripe of zebrafish larvae. Notably, it displayed a significant cardio-protective effect in zebrafish in concentrations inferior to the IC50 (<43.53 ± 6.45 µM), while in high concentrations (>IC50), it accumulated in the blood and caused pericardial edema, being cardiotoxic to zebrafish larvae. Remarkably, PcShK3 suppressed the 6-OHDA-induced neurotoxicity on the locomotive behavior of zebrafish. The present results indicated that PcShK3 is a novel member of ShK toxin family, and has the intrinsic ability to induce neuro- and cardio-protective effects or cause cardiac toxicity, according to its effective concentration.


Subject(s)
Cardiotonic Agents/pharmacology , Cnidarian Venoms/pharmacology , Neuroprotective Agents/pharmacology , Peptides/pharmacology , Animals , Animals, Genetically Modified , Anthozoa/genetics , Behavior, Animal/drug effects , Dose-Response Relationship, Drug , Heart/drug effects , Oxidopamine/toxicity , Transcriptome , Zebrafish
7.
J Proteome Res ; 17(2): 891-902, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29285938

ABSTRACT

Palythoa caribaeorum (class Anthozoa) is a zoanthid that together jellyfishes, hydra, and sea anemones, which are venomous and predatory, belongs to the Phyllum Cnidaria. The distinguished feature in these marine animals is the cnidocytes in the body tissues, responsible for toxin production and injection that are used majorly for prey capture and defense. With exception for other anthozoans, the toxin cocktails of zoanthids have been scarcely studied and are poorly known. Here, on the basis of the analysis of P. caribaeorum transcriptome, numerous predicted venom-featured polypeptides were identified including allergens, neurotoxins, membrane-active, and Kunitz-like peptides (PcKuz). The three predicted PcKuz isotoxins (1-3) were selected for functional studies. Through computational processing comprising structural phylogenetic analysis, molecular docking, and dynamics simulation, PcKuz3 was shown to be a potential voltage gated potassium-channel inhibitor. PcKuz3 fitted well as new functional Kunitz-type toxins with strong antilocomotor activity as in vivo assessed in zebrafish larvae, with weak inhibitory effect toward proteases, as evaluated in vitro. Notably, PcKuz3 can suppress, at low concentration, the 6-OHDA-induced neurotoxicity on the locomotive behavior of zebrafish, which indicated PcKuz3 may have a neuroprotective effect. Taken together, PcKuz3 figures as a novel neurotoxin structure, which differs from known homologous peptides expressed in sea anemone. Moreover, the novel PcKuz3 provides an insightful hint for biodrug development for prospective neurodegenerative disease treatment.


Subject(s)
Anthozoa/chemistry , Cnidarian Venoms/isolation & purification , Neurotoxins/isolation & purification , Peptides/isolation & purification , Potassium Channel Blockers/isolation & purification , Transcriptome , Allergens/chemistry , Allergens/isolation & purification , Animals , Anthozoa/pathogenicity , Anthozoa/physiology , Binding Sites , Cnidarian Venoms/chemistry , Cnidarian Venoms/toxicity , High-Throughput Nucleotide Sequencing , Larva/drug effects , Larva/physiology , Locomotion/drug effects , Molecular Docking Simulation , Molecular Dynamics Simulation , Neurotoxins/chemistry , Neurotoxins/toxicity , Oxidopamine/antagonists & inhibitors , Oxidopamine/pharmacology , Peptides/chemistry , Peptides/toxicity , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/toxicity , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Potassium Channels, Voltage-Gated/chemistry , Potassium Channels, Voltage-Gated/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...