Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
IEEE Trans Image Process ; 31: 1857-1869, 2022.
Article in English | MEDLINE | ID: mdl-35139016

ABSTRACT

We present See360, which is a versatile and efficient framework for 360° panoramic view interpolation using latent space viewpoint estimation. Most of the existing view rendering approaches only focus on indoor or synthetic 3D environments and render new views of small objects. In contrast, we suggest to tackle camera-centered view synthesis as a 2D affine transformation without using point clouds or depth maps, which enables an effective 360° panoramic scene exploration. Given a pair of reference images, the See360 model learns to render novel views by a proposed novel Multi-Scale Affine Transformer (MSAT), enabling the coarse-to-fine feature rendering. We also propose a Conditional Latent space AutoEncoder (C-LAE) to achieve view interpolation at any arbitrary angle. To show the versatility of our method, we introduce four training datasets, namely UrbanCity360, Archinterior360, HungHom360 and Lab360, which are collected from indoor and outdoor environments for both real and synthetic rendering. Experimental results show that the proposed method is generic enough to achieve real-time rendering of arbitrary views for all four datasets. In addition, our See360 model can be applied to view synthesis in the wild: with only a short extra training time (approximately 10 mins), and is able to render unknown real-world scenes. The superior performance of See360 opens up a promising direction for camera-centered view rendering and 360° panoramic view interpolation.

2.
IEEE Trans Image Process ; 30: 4157-4170, 2021.
Article in English | MEDLINE | ID: mdl-33819156

ABSTRACT

Face hallucination or super-resolution is a practical application of general image super-resolution which has been recently studied by many researchers. The challenge of good face hallucination comes from a variety of poses, illuminations, facial expressions, and other degradations. In many proposed methods, researchers resolve it by using a generative neural network to reduce the perceptual loss so we can generate a photo-realistic image. The problem is that researchers usually overlook the fidelity of the super-resolved image which could affect further facial image processing. Meanwhile, many CNN based approaches cascade multiple networks to extract facial prior information to improve super-resolution quality. Because of the end-to-end design, the details are missing for investigation. In this paper, we combine new techniques in convolutional neural network and random forests to a Hierarchical CNN based Random Forests (HCRF) approach for face super-resolution in a coarse-to-fine manner. In the proposed approach, we focus on a general approach that can handle facial images with various conditions without pre-processing. To the best of our knowledge, this is the first paper that combines the advantages of deep learning with random forests for face super-resolution. To achieve superior performance, we propose two novel CNN models for coarse facial image super-resolution and segmentation and then apply new random forests to target on local facial features refinement making use of the segmentation results. Extensive benchmark experiments on subjective and objective evaluation show that HCRF can achieve comparable speed and competitive performance compared with state-of-the-art super-resolution approaches for very low-resolution images.


Subject(s)
Deep Learning , Face/diagnostic imaging , Image Processing, Computer-Assisted/methods , Decision Trees , Humans , Neural Networks, Computer
3.
IEEE Trans Image Process ; 29: 170-185, 2020.
Article in English | MEDLINE | ID: mdl-31265399

ABSTRACT

Screen content coding (SCC) is an extension of high efficiency video coding by adopting new coding modes to improve the coding efficiency of SCC at the expense of increased complexity. This paper proposes an online-learning approach for fast mode decision and coding unit (CU) size decision in SCC. To make a fast mode decision, the corner point is first extracted as a unique feature in screen content, which is an essential pre-processing step to guide Bayesian decision modeling. Second, the distinct color number in a CU is derived as another unique feature in screen content to build the precise model using online-learning for skipping unnecessary modes. Third, the correlation of the modes among spatial neighboring CUs is analyzed to further eliminate unnecessary mode candidates. Finally, the Bayesian decision rule using online-learning is applied again to make a fast CU size decision. To ensure the accuracy of the Bayesian decision models, new scene change detection is designed to update the models. Results show that the proposed algorithm achieves 36.69% encoding time reduction with 1.08% Bjøntegaard delta bitrate (BDBR) increment under all intra configuration. By integrating into the existing fast SCC approach, the proposed algorithm reduces 48.83% encoding time with a 1.78% increase in BDBR.

4.
Article in English | MEDLINE | ID: mdl-29028207

ABSTRACT

Due to the advancement of DNA sequencing techniques, the number of sequenced individual genomes has experienced an exponential growth. Thus, effective compression of this kind of sequences is highly desired. In this work, we present a novel compression algorithm called Reference-based Compression algorithm using the concept of Clustering (RCC). The rationale behind RCC is based on the observation about the existence of substructures within the population sequences. To utilize these substructures, k-means clustering is employed to partition sequences into clusters for better compression. A reference sequence is then constructed for each cluster so that sequences in that cluster can be compressed by referring to this reference sequence. The reference sequence of each cluster is also compressed with reference to a sequence which is derived from all the reference sequences. Experiments show that RCC can further reduce the compressed size by up to 91.0 percent when compared with state-of-the-art compression approaches. There is a compromise between compressed size and processing time. The current implementation in Matlab has time complexity in a factor of thousands higher than the existing algorithms implemented in C/C++. Further investigation is required to improve processing time in future.


Subject(s)
DNA/genetics , Data Compression/methods , Databases, Genetic , Genomics/methods , Cluster Analysis , Humans , Sequence Analysis, DNA
5.
Article in English | MEDLINE | ID: mdl-26671804

ABSTRACT

Traditionally, intra-sequence similarity is exploited for compressing a single DNA sequence. Recently, remarkable compression performance of individual DNA sequence from the same population is achieved by encoding its difference with a nearly identical reference sequence. Nevertheless, there is lack of general algorithms that also allow less similar reference sequences. In this work, we extend the intra-sequence to the inter-sequence similarity in that approximate matches of subsequences are found between the DNA sequence and a set of reference sequences. Hence, a set of nearly identical DNA sequences from the same population or a set of partially similar DNA sequences like chromosome sequences and DNA sequences of related species can be compressed together. For practical compressors, the compressed size is usually influenced by the compression order of sequences. Fast search algorithms for the optimal compression order are thus developed for multiple sequences compression. Experimental results on artificial and real datasets demonstrate that our proposed multiple sequences compression methods with fast compression order search are able to achieve good compression performance under different levels of similarity in the multiple DNA sequences.


Subject(s)
Algorithms , Data Compression/methods , Databases, Genetic , Pattern Recognition, Automated/methods , Sequence Alignment/methods , Sequence Analysis, DNA/methods , Base Sequence , DNA/genetics , Molecular Sequence Data
6.
IEEE Trans Image Process ; 24(10): 3232-45, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26054066

ABSTRACT

This paper proposes a two-stage framework for fast image interpolation via random forests (FIRF). The proposed FIRF method gives high accuracy, as well as requires low computation. The underlying idea of this proposed work is to apply random forests to classify the natural image patch space into numerous subspaces and learn a linear regression model for each subspace to map the low-resolution image patch to high-resolution image patch. The FIRF framework consists of two stages. Stage 1 of the framework removes most of the ringing and aliasing artifacts in the initial bicubic interpolated image, while Stage 2 further refines the Stage 1 interpolated image. By varying the number of decision trees in the random forests and the number of stages applied, the proposed FIRF method can realize computationally scalable image interpolation. Extensive experimental results show that the proposed FIRF(3, 2) method achieves more than 0.3 dB improvement in peak signal-to-noise ratio over the state-of-the-art nonlocal autoregressive modeling (NARM) method. Moreover, the proposed FIRF(1, 1) obtains similar or better results as NARM while only takes its 0.3% computational time.

7.
Int J Bioinform Res Appl ; 10(6): 574-86, 2014.
Article in English | MEDLINE | ID: mdl-25335564

ABSTRACT

DNA microarray experiment unavoidably generates gene expression data with missing values. This hardens subsequent analysis such as biclusters detection which aims to find a set of co-expressed genes under some experimental conditions. Missing values are thus required to be estimated before biclusters detection. Existing missing values estimation algorithms rely on finding coherence among expression values throughout the data. In view that both missing values estimation and biclusters detection aim at exploiting coherence inside the expression data, we propose to integrate these two steps into a joint framework. The benefits are twofold; the missing values estimation can improve biclusters analysis and the coherence in detected biclusters can be exploited for accurate missing values estimation. Experimental results show that the bicluster information can significantly improve the accuracy in missing values estimation. Also, the joint framework enables the detection of biologically meaningful biclusters.


Subject(s)
Algorithms , Data Interpretation, Statistical , Gene Expression Profiling/methods , Models, Statistical , Oligonucleotide Array Sequence Analysis/methods , Proteome/metabolism , Computer Simulation , Sample Size
8.
IEEE Trans Image Process ; 21(3): 1061-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21937348

ABSTRACT

Soft-decision adaptive interpolation (SAI) provides a powerful framework for image interpolation. The robustness of SAI can be further improved by using weighted least-squares estimation, instead of least-squares estimation in both of the parameter estimation and data estimation steps. To address the mismatch issue of "geometric duality" during parameter estimation, the residuals (prediction errors) are weighted according to the geometric similarity between the pixel of interest and the residuals. The robustness of data estimation can be improved by modeling the weights of residuals with the well-known bilateral filter. Experimental results show that there is a 0.25-dB increase in peak signal-to-noise ratio (PSNR) for a sample set of natural images after the suggested improvements are incorporated into the original SAI. The proposed algorithm produces the highest quality in terms of PSNR and subjective quality among sophisticated algorithms in the literature.

9.
IEEE Trans Image Process ; 20(10): 2780-7, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21926003

ABSTRACT

In this paper, we present an analysis of the dyadic approximation error introduced by the integerization of transform coding in H.264/AVC-like codecs. We derive the analytical formulations for dyadic approximation error and nonorthogonality error. We further classify the dyadic approximation error into a "system error" and a "nonflat error," and proposed two models for them. We found that the "nonflat error" has a substantial impact on video quality if the number of shifting bits at decoder side (DQ_BITS) is small. We also give a theoretical justification on why scaling factors at encoder side are better to be adapted to the rescaling factors at decoder side in H.264/AVC-like codecs.

10.
IEEE Trans Image Process ; 18(2): 357-70, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19144594

ABSTRACT

In video applications where video sequences are compressed and stored in a storage device for future delivery, the encoding process is typically carried out without enough prior knowledge about the channel characteristics of a network. Error-resilient transcoding plays an important role to provide an addition of resilience to the video data, where or whenever it is needed. Recently, a reference picture selection (RPS) scheme has been adopted in an error-resilient transcoder in order to reduce error effects for the already encoded video bitstream. In this approach, the transcoder learns through a feedback channel about the damaged parts of a previously coded frame and then decides to code the next P-frame not relative to the most recent, but to an older, reference picture, which is known to be error-free in the decoder. One straightforward approach of adopting RPS in error-resilient transcoding is to decode all the P-frames from the previously nearest I-frame to the current transmitted frame which is then re-encoded with a new reference frame; this can create undesirable complexity in the transcoder as well as introduce re-encoding errors. In this paper, some novel techniques are suggested for an effective implementation of RPS in the error-resilient transcoder with the minimum requirement on its complexity. All the proposed techniques will manipulate video data in the compressed domain such that the computational loading of the transcoder is greatly reduced. By utilizing these new compressed-domain techniques, we develop a new structure to handle various types of macroblocks in the transcoder which re-uses motion vectors and prediction errors from the encoded bitstream. Experimental results demonstrate that significant improvements in terms of transcoder complexity and quality of reconstructed video can be achieved by employing our compressed-domain techniques.


Subject(s)
Artifacts , Computer Communication Networks , Data Compression/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Signal Processing, Computer-Assisted , Video Recording/methods , Algorithms , Reproducibility of Results , Sensitivity and Specificity
11.
Bioinformation ; 2(9): 412-6, 2008 Jul 14.
Article in English | MEDLINE | ID: mdl-18795115

ABSTRACT

Current DNA compression algorithms work by finding similar repeated regions within the DNA sequence and then encoding these regions together to achieve compression. Our study on chromosome sequence similarity reveals that the length of similar repeated regions within one chromosome is about 4.5% of the total sequence length. The compression gain is often not high because of these short lengths. It is well known that similarity exist among different regions of chromosome sequences. This implies that similar repeated sequences are found among different regions of chromosome sequences. Here, we study cross-chromosomal similarity for DNA sequence compression. The length and location of similar repeated regions among the sixteen chromosomes of S. cerevisiae are studied. It is found that the average percentage of similar subsequences found between two chromosome sequences is about 10% in which 8% comes from cross-chromosomal prediction and 2% from self-chromosomal prediction. The percentage of similar subsquences is about 18% in which only 1.2% comes from self-chromosomal prediction while the rest is from cross-chromosomal prediction among the 16 chromosomes studied. This suggests the importance of cross-chromosomal similarities in addition to self-chromosomal similarities in DNA sequence compression. An additional 23% of storage space could be reduced on average using self-chromosomal and cross-chromosomal predictions in compressing the 16 chromosomes of S. cerevisiae.

12.
BMC Bioinformatics ; 9: 210, 2008 Apr 23.
Article in English | MEDLINE | ID: mdl-18433478

ABSTRACT

BACKGROUND: The DNA microarray technology allows the measurement of expression levels of thousands of genes under tens/hundreds of different conditions. In microarray data, genes with similar functions usually co-express under certain conditions only 1. Thus, biclustering which clusters genes and conditions simultaneously is preferred over the traditional clustering technique in discovering these coherent genes. Various biclustering algorithms have been developed using different bicluster formulations. Unfortunately, many useful formulations result in NP-complete problems. In this article, we investigate an efficient method for identifying a popular type of biclusters called additive model. Furthermore, parallel coordinate (PC) plots are used for bicluster visualization and analysis. RESULTS: We develop a novel and efficient biclustering algorithm which can be regarded as a greedy version of an existing algorithm known as pCluster algorithm. By relaxing the constraint in homogeneity, the proposed algorithm has polynomial-time complexity in the worst case instead of exponential-time complexity as in the pCluster algorithm. Experiments on artificial datasets verify that our algorithm can identify both additive-related and multiplicative-related biclusters in the presence of overlap and noise. Biologically significant biclusters have been validated on the yeast cell-cycle expression dataset using Gene Ontology annotations. Comparative study shows that the proposed approach outperforms several existing biclustering algorithms. We also provide an interactive exploratory tool based on PC plot visualization for determining the parameters of our biclustering algorithm. CONCLUSION: We have proposed a novel biclustering algorithm which works with PC plots for an interactive exploratory analysis of gene expression data. Experiments show that the biclustering algorithm is efficient and is capable of detecting co-regulated genes. The interactive analysis enables an optimum parameter determination in the biclustering algorithm so as to achieve the best result. In future, we will modify the proposed algorithm for other bicluster models such as the coherent evolution model.


Subject(s)
Algorithms , Cluster Analysis , Computer Graphics , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Pattern Recognition, Automated/methods , User-Computer Interface , Artificial Intelligence , Programming Languages
13.
IEEE Trans Image Process ; 16(9): 2169-83, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17784591

ABSTRACT

MPEG digital video is becoming ubiquitous for video storage and communications. It is often desirable to perform various video cassette recording (VCR) functions such as backward playback in MPEG videos. However, the predictive processing techniques employed in MPEG severely complicate the backward-play operation. A straightforward implementation of backward playback is to transmit and decode the whole group-of-picture (GOP), store all the decoded frames in the decoder buffer, and play the decoded frames in reverse order. This approach requires a significant buffer in the decoder, which depends on the GOP size, to store the decoded frames. This approach could not be possible in a severely constrained memory requirement. Another alternative is to decode the GOP up to the current frame to be displayed, and then go back to decode the GOP again up to the next frame to be displayed. This approach does not need the huge buffer, but requires much higher bandwidth of the network and complexity of the decoder. In this paper, we propose a macroblock-based algorithm for an efficient implementation of the MPEG video streaming system to provide backward playback over a network with the minimal requirements on the network bandwidth and the decoder complexity. The proposed algorithm classifies macroblocks in the requested frame into backward macroblocks (BMBs) and forward/backward macroblocks (FBMBs). Two macroblock-based techniques are used to manipulate different types of macroblocks in the compressed domain and the server then sends the processed macroblocks to the client machine. For BMBs, a VLC-domain technique is adopted to reduce the number of macroblocks that need to be decoded by the decoder and the number of bits that need to be sent over the network in the backward-play operation. We then propose a newly mixed VLC/DCT-domain technique to handle FBMBs in order to further reduce the computational complexity of the decoder. With these compressed-domain techniques, the proposed architecture only manipulates macroblocks either in the VLC domain or the quantized DCT domain resulting in low server complexity. Experimental results show that, as compared to the conventional system, the new streaming system reduces the required network bandwidth and the decoder complexity significantly.


Subject(s)
Computer Communication Networks , Data Compression/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Internet , Signal Processing, Computer-Assisted , Video Recording/methods , Algorithms , Reproducibility of Results , Sensitivity and Specificity , Video Recording/standards
14.
IEEE Trans Image Process ; 16(8): 2058-68, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17688211

ABSTRACT

The multiscale directional filter bank (MDFB) improves the radial frequency resolution of the contourlet transform by introducing an additional decomposition in the high-frequency band. The increase in frequency resolution is particularly useful for texture description because of the quasi-periodic property of textures. However, the MDFB needs an extra set of scale and directional decomposition, which is performed on the full image size. The rise in computational complexity is, thus, prominent. In this paper, we develop an efficient implementation framework for the MDFB. In the new framework, directional decomposition on the first two scales is performed prior to the scale decomposition. This allows sharing of directional decomposition among the two scales and, hence, reduces the computational complexity significantly. Based on this framework, two fast implementations of the MDFB are proposed. The first one can maintain the same flexibility in directional selectivity in the first two scales while the other has the same redundancy ratio as the contourlet transform. Experimental results show that the first and the second schemes can reduce the computational time by 33.3%-34.6% and 37.1%-37.5%, respectively, compared to the original MDFB algorithm. Meanwhile, the texture retrieval performance of the proposed algorithms is more or less the same as the original MDFB approach which outperforms the steerable pyramid and the contourlet transform approaches.


Subject(s)
Algorithms , Artificial Intelligence , Data Compression/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Computer Systems , Reproducibility of Results , Sensitivity and Specificity
15.
IEEE Trans Image Process ; 16(5): 1232-45, 2007 May.
Article in English | MEDLINE | ID: mdl-17491455

ABSTRACT

In the past, most design and optimization work on hybrid video codecs relied mainly on experimental evidence. A proper theoretical model is always desirable, since this allows us to explain the phenomena of existing codecs and to design better ones. In this paper, we make use of the first-order Markov model to derive an approximated separable autocorrelation model for the block-based motion compensation frame difference (MCFD) signal. A major assumption of our derivation is that the net deformation of pixels is directional, in general, rather than a uniform error distribution in a block. We have also shown that the imperfect block-based motion compensation is significant to the theoretical study and the behavior of motion-compensated codecs. Results of our experimental work show that the derived model can describe the statistical characteristics of the MCFD signals accurately. The model also shows that the imperfectly formulated block-based motion compensation can result in an incorrect MCFD autocorrelation function while, conversely, it can form a better block-based motion compensation scheme.


Subject(s)
Artifacts , Artificial Intelligence , Data Compression/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Video Recording/methods , Algorithms , Computer Simulation , Data Interpretation, Statistical , Markov Chains , Models, Statistical , Motion , Reproducibility of Results , Sensitivity and Specificity
16.
IEEE Trans Image Process ; 15(2): 394-403, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16479809

ABSTRACT

For a conventional downscaling video transcoder, a video server has firstly to decompress the video, perform downscaling operations in the pixel domain, and then recompress it. This is computationally intensive. However, it is difficult to perform video downscaling in the discrete cosine transform (DCT)- domain since the prediction errors of each frame are computed from its immediate past higher resolution frames. Recently, a fast algorithm for DCT domain image downsampling has been proposed to obtain the downsampled version of DCT coefficients with low computational complexity. However, there is a mismatch between the downsampled version of DCT coefficients and the resampled motion vectors. In other words, significant quality degradation is introduced when the derivation of the original motion vectors and the resampled motion vector is large. In this paper, we propose a new architecture to obtain resampled DCT coefficients in the DCT domain by using the split and merge technique. Using our proposed video transcoder architecture, a macroblock is splitted into two regions: dominant region and the boundary region. The dominant region of the macroblock can be transcoded in the DCT domain with low computational complexity and re-encoding error can be avoided. By transcoding the boundary region adaptively, low computational complexity can also be achieved. More importantly, the re-encoding error introduced in the boundary region can be controlled more dynamically. Experimental results show that our proposed video downscaling transcoder can lead to significant computational savings as well as videos with high quality as compared with the conventional approach. The proposed video transcoder is useful for video servers that provide quality service in real-time for heterogeneous clients.


Subject(s)
Algorithms , Computer Communication Networks , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Information Storage and Retrieval/methods , Signal Processing, Computer-Assisted , Video Recording/methods
17.
Bioinformation ; 1(7): 242-6, 2006 Nov 14.
Article in English | MEDLINE | ID: mdl-17597898

ABSTRACT

Z-curve features are one of the popular features used in exon/intron classification. We showed that although both Z-curve and Fourier approaches are based on detecting 3-periodicity in coding regions, there are significant differences in their spectral formulation. From the spectral formulation of the Z-curve, we obtained three modified sequences that characterize different biological properties. Spectral analysis on the modified sequences showed a much more prominent 3-periodicity peak in coding regions than the Fourier approach. For long sequences, prominent peaks at 2Pi/3 are observed at coding regions, whereas for short sequences, clearly discernible peaks are still visible. Better classification can be obtained using spectral features derived from the modified sequences.

18.
IEEE Trans Image Process ; 14(5): 597-607, 2005 May.
Article in English | MEDLINE | ID: mdl-15887554

ABSTRACT

In order to reduce the computation load, many conventional fast block-matching algorithms have been developed to reduce the set of possible searching points in the search window. All of these algorithms produce some quality degradation of a predicted image. Alternatively, another kind of fast block-matching algorithms which do not introduce any prediction error as compared with the full-search algorithm is to reduce the number of necessary matching evaluations for every searching point in the search window. The partial distortion search (PDS) is a well-known technique of the second kind of algorithms. In the literature, many researches tried to improve both lossy and lossless block-matching algorithms by making use of an assumption that pixels with larger gradient magnitudes have larger matching errors on average. Based on a simple analysis, it is found that, on average, pixel matching errors with similar magnitudes tend to appear in clusters for natural video sequences. By using this clustering characteristic, we propose an adaptive PDS algorithm which significantly improves the computation efficiency of the original PDS. This approach is much better than other algorithms which make use of the pixel gradients. Furthermore, the proposed algorithm is most suitable for motion estimation of both opaque and boundary macroblocks of an arbitrary-shaped object in MPEG-4 coding.


Subject(s)
Algorithms , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Signal Processing, Computer-Assisted , Subtraction Technique , Video Recording/methods , Artificial Intelligence , Cluster Analysis , Feedback , Information Storage and Retrieval/methods , Movement , Reproducibility of Results , Sensitivity and Specificity
19.
IEEE Trans Neural Netw ; 14(4): 781-93, 2003.
Article in English | MEDLINE | ID: mdl-18238059

ABSTRACT

Many researchers have explored the use of neural-network representations for the adaptive processing of data structures. One of the most popular learning formulations of data structure processing is backpropagation through structure (BPTS). The BPTS algorithm has been successful applied to a number of learning tasks that involve structural patterns such as logo and natural scene classification. The main limitations of the BPTS algorithm are attributed to slow convergence speed and the long-term dependency problem for the adaptive processing of data structures. In this paper, an improved algorithm is proposed to solve these problems. The idea of this algorithm is to optimize the free learning parameters of the neural network in the node representation by using least-squares-based optimization methods in a layer-by-layer fashion. Not only can fast convergence speed be achieved, but the long-term dependency problem can also be overcome since the vanishing of gradient information is avoided when our approach is applied to very deep tree structures.

20.
IEEE Trans Image Process ; 12(11): 1398-403, 2003.
Article in English | MEDLINE | ID: mdl-18244697

ABSTRACT

A fast algorithm for fractal image coding based on a single kick-out condition and the zero contrast prediction is proposed in this paper. The single kick-out condition can avoid a large number of range-domain block matches when finding the best matched domain block. An efficient method for zero contrast prediction is also proposed, which can determine whether the contrast factor for a domain block is zero or not, and compute the corresponding difference between the range block and the transformed domain block efficiently and exactly. The proposed algorithm can achieve the same reconstructed image quality as the exhaustive search, and can greatly reduce the required computation or runtime. In addition, this algorithm does not need any pre-processing step or additional memory for its implementation, and can combine with other fast fractal algorithms to further improve the speed. Experimental results show that the runtime is reduced by about 50% of that of the exhaustive search method. When combined with the DCT Inner Product algorithm, the required runtime for the algorithm can be further reduced by about 50%. The proposed algorithm was also compared to two other fast fractal algorithms. Experimental results also show that our algorithm achieves a better efficiency and requires a much smaller amount of memory for implementation.

SELECTION OF CITATIONS
SEARCH DETAIL
...