Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 14(8): 4263-72, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-24971488

ABSTRACT

Structural and magnetic properties of (In,Ga)As-(Ga,Mn)As core-shell nanowires grown by molecular beam epitaxy on GaAs(111)B substrate with gold catalyst have been investigated. (In,Ga)As core nanowires were grown at high temperature (500 °C) whereas (Ga,Mn)As shells were deposited on the {11̅00} side facets of the cores at much lower temperature (220 °C). High-resolution transmission electron microscopy images and high spectral resolution Raman scattering data show that both the cores and the shells of the nanowires have wurtzite crystalline structure. Scanning and transmission electron microscopy observations show smooth (Ga,Mn)As shells containing 5% of Mn epitaxially deposited on (In,Ga)As cores containing about 10% of In without any misfit dislocations at the core-shell interface. With the In content in the (In,Ga)As cores larger than 5% the (In,Ga)As lattice parameter is higher than that of (Ga,Mn)As and the shell is in the tensile strain state. Elaborated magnetic studies indicate the presence of ferromagnetic coupling in (Ga,Mn)As shells at the temperatures in excess of 33 K. This coupling is maintained only in separated mesoscopic volumes resulting in an overall superparamagnetic behavior which gets blocked below ∼ 17 K.

2.
Nanoscale ; 5(16): 7410-8, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23832244

ABSTRACT

Mn-doped GaAs nanowires were grown in the self-catalytic growth mode on the oxidized Si(100) surface by molecular beam epitaxy and characterized by scanning and transmission electron microscopy, Raman scattering, photoluminescence, cathodoluminescence, and electron transport measurements. The transmission electron microscopy studies evidenced the substantial accumulation of Mn inside the catalyzing Ga droplets on the top of the nanowires. Optical and transport measurements revealed that the limit of the Mn content for self-catalysed growth of GaAs nanowires corresponds to the doping level, i.e., it is much lower than the Mn/Ga flux ratio (about 3%) used during the MBE growth. The resistivity measurements of individual nanowires confirmed that they are conductive, in accordance with the photoluminescence measurements which showed the presence of Mn(2+) acceptors located at Ga sites of the GaAs host lattice of the nanowires. An anomalous temperature dependence of the photoluminescence related to excitons was demonstrated for Mn-doped GaAs nanowires.

SELECTION OF CITATIONS
SEARCH DETAIL
...