Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10672, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724564

ABSTRACT

To provide accurate predictions, current machine learning-based solutions require large, manually labeled training datasets. We implement persistent homology (PH), a topological tool for studying the pattern of data, to analyze echocardiography-based strain data and differentiate between rare diseases like constrictive pericarditis (CP) and restrictive cardiomyopathy (RCM). Patient population (retrospectively registered) included those presenting with heart failure due to CP (n = 51), RCM (n = 47), and patients without heart failure symptoms (n = 53). Longitudinal, radial, and circumferential strains/strain rates for left ventricular segments were processed into topological feature vectors using Machine learning PH workflow. In differentiating CP and RCM, the PH workflow model had a ROC AUC of 0.94 (Sensitivity = 92%, Specificity = 81%), compared with the GLS model AUC of 0.69 (Sensitivity = 65%, Specificity = 66%). In differentiating between all three conditions, the PH workflow model had an AUC of 0.83 (Sensitivity = 68%, Specificity = 84%), compared with the GLS model AUC of 0.68 (Sensitivity = 52% and Specificity = 76%). By employing persistent homology to differentiate the "pattern" of cardiac deformations, our machine-learning approach provides reasonable accuracy when evaluating small datasets and aids in understanding and visualizing patterns of cardiac imaging data in clinically challenging disease states.


Subject(s)
Echocardiography , Machine Learning , Humans , Male , Echocardiography/methods , Female , Middle Aged , Rare Diseases/diagnostic imaging , Pericarditis, Constrictive/diagnostic imaging , Pericarditis, Constrictive/diagnosis , Cardiomyopathy, Restrictive/diagnostic imaging , Retrospective Studies , Aged , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Heart Failure/diagnostic imaging , Adult
2.
J Am Coll Cardiol ; 80(23): 2187-2201, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36456049

ABSTRACT

BACKGROUND: Changes in cardiac size, myocardial mass, cardiomyocyte appearance, and, ultimately, the function of the entire organ are interrelated features of cardiac remodeling that profoundly affect patient outcomes. OBJECTIVES: This study proposes that the application of radiomics for extracting cardiac ultrasonic textural features (ultrasomics) can aid rapid, automated assessment of left ventricular (LV) structure and function without requiring manual measurements. METHODS: This study developed machine-learning models using cardiac ultrasound images from 1,915 subjects in 3 clinical cohorts: 1) an expert-annotated cardiac point-of-care-ultrasound (POCUS) registry (n = 943, 80% training/testing and 20% internal validation); 2) a prospective POCUS cohort for external validation (n = 275); and 3) a prospective external validation on high-end ultrasound systems (n = 484). In a type 2 diabetes murine model, echocardiography of wild-type (n = 10) and Leptr-/- (n = 8) mice were assessed longitudinally at 3 and 25 weeks, and ultrasomics features were correlated with histopathological features of hypertrophy. RESULTS: The ultrasomics model predicted LV remodeling in the POCUS and high-end ultrasound external validation studies (area under the curve: 0.78 [95% CI: 0.68-0.88] and 0.79 [95% CI: 0.73-0.86], respectively). Similarly, the ultrasomics model predicted LV remodeling was significantly associated with major adverse cardiovascular events in both cohorts (P < 0.0001 and P = 0.0008, respectively). Moreover, on multivariate analysis, the ultrasomics probability score was an independent echocardiographic predictor of major adverse cardiovascular events in the high-end ultrasound cohort (HR: 8.53; 95% CI: 4.75-32.1; P = 0.0003). In the murine model, cardiomyocyte hypertrophy positively correlated with 2 ultrasomics biomarkers (R2 = 0.57 and 0.52, Q < 0.05). CONCLUSIONS: Cardiac ultrasomics-based biomarkers may aid development of machine-learning models that provide an expert-level assessment of LV structure and function.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Mice , Animals , Ventricular Remodeling , Disease Models, Animal , Prospective Studies , Ultrasonics , Myocytes, Cardiac , Hypertrophy
SELECTION OF CITATIONS
SEARCH DETAIL
...