Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Res Food Sci ; 7: 100586, 2023.
Article in English | MEDLINE | ID: mdl-37766892

ABSTRACT

Catastrophes such as a nuclear war would generate atmospheric soot and reduce sunlight, making it difficult to grow crops. Under such conditions, people might turn to inedible plant biomass for nutrition, but the convertibility and nutritional content of this biomass have not been rigorously analyzed. We found that if plant biomass were converted into food at 30% efficiency, 6.7 kg of biomass per day would yield adequate carbohydrates, but contain potentially toxic or insufficient levels of other nutrients for a family of four. Therefore, exploiting biomass with low mineral content for carbohydrates and consuming other sources of protein, fat, and vitamins such as edible insects/single-cell proteins and vitamin supplements could provide a balanced diet in a global catastrophic environment.

2.
J Food Sci ; 85(4): 980-988, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32180222

ABSTRACT

Thermal processing of pulse crops influences the type and levels of prebiotic carbohydrates present. Pulses such as common bean and chickpea are rich sources of prebiotic carbohydrates, including sugar alcohols (SAs), raffinose family oligosaccharides (RFOs), fructooligosaccharides (FOSs), resistant starch (RS), and amylose. This study determined the changes in prebiotic carbohydrate concentrations of seven common bean and two chickpea market classes after thermal processing (cooking, cooling, and reheating). A 100-g serving of common bean provides 0.7 to 10.6 mg of SAs, 3.9 to 5.2 g of RFOs, 57 to 143 mg of FOSs, 2.6 to 3.9 g of RS, and 25 to 33 g of amylose; cooling and reheating reduced RFOs but increased SAs, FOSs, and RS in many cases. A 100-g serving of chickpea (cooked at 90 °C for 4 hr) provides 1.2 to 1.7 g of SAs, 2.5 to 3.2 g of RFOs, 26 to 43 mg of FOSs, 3.6 to 5.3 g of RS, and 24 to 30 g of amylose; cooling and reheating reduced SAs and RFOs but increased FOSs, RS, and amylose concentrations. Processing methods change the nutritional quality of pulse crops by changing the type and quantity of prebiotic carbohydrates.


Subject(s)
Carbohydrates/analysis , Cicer/chemistry , Phaseolus/chemistry , Prebiotics/analysis , Raffinose/analysis , Amylose/analysis , Cooking/methods , Crops, Agricultural , Hot Temperature , Nutritive Value , Phase Transition , Seeds/chemistry , Starch/analysis
3.
Front Plant Sci ; 11: 112, 2020.
Article in English | MEDLINE | ID: mdl-32153615

ABSTRACT

Prebiotic carbohydrates are compounds that include simple sugars, sugar alcohols, and raffinose family oligosaccharides, which are fermented by gut bacteria and can influence the species profile of the gut microbiome to reduce obesity and weight gain. Prebiotic carbohydrates are also associated with several health benefits including reduced insulin dependence and incidence of colorectal cancer. Although pulse crops such as chickpea have been important sources of nutrition for human diets for thousands of years, relatively little is known about the profiles of prebiotic carbohydrates in pulse crops. The objectives of this study were to characterize the type and concentration of seed prebiotic carbohydrates in 18 kabuli chickpea genotypes grown in 2017 and 2018 in Idaho and Washington, and partition variance components conditioning these nutritional quality traits in chickpea. Genotype effects were significant for fructose, sucrose, raffinose, and kestose. Environment effects were also significant for several carbohydrates. However, year effects were the greatest sources of variance for all carbohydrates. Concentrations of most carbohydrates were significantly greater in 2017, when there was less precipitation during the growing season coupled with greater heat stress during grain filling than in 2018. This may reflect the role of many of these carbohydrates as osmoprotectants produced in response to heat and water stress. Overall, our results suggest that a survey of more genetically diverse plant materials, such as a chickpea 'mini-core' collection, may reveal genotypes that produce significantly greater concentrations of selected prebiotic carbohydrates and could be used to introduce desirable nutritional traits into adapted chickpea cultivars.

4.
Sci Rep ; 9(1): 10374, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31316128

ABSTRACT

Kale is a leafy green vegetable regularly grown using non-organic agricultural systems. In recent years, organic kale demand has increased at near-doubling rates in the USA due to its perceived nutritional value. The objective of this study was to determine the effect of organic cover cropping systems on subsequent kale biomass production and nutrient composition (protein, mineral, and prebiotic carbohydrate concentrations) and to assess organic kale as a potential whole food source of daily essential mineral micronutrients and prebiotic carbohydrates. A single 100-g serving of fresh organic kale can provide mineral micronutrients (43-438 mg Ca; 11-60 mg Mg; 28-102 mg P; 0.5-3.3 mg Fe; 0.3-1.3 mg Mn; 1-136 µg Cu; and 0-35 µg Se) as well as 5.7-8.7 g of total prebiotic carbohydrates, including sugar alcohols (0.4-6.6 mg), simple sugars (6-1507 mg), raffinose and fructooligosaccharides (0.8-169 mg), hemicellulose (77-763 mg), lignin (0-90 mg), and unknown dietary fiber (5-6 g). Fresh organic kale has low to moderate concentrations of protein (1.3-6.0 g/100 g). Study results indicate that Starbor and Red Russian are the most suitable kale cultivars for organic production without considerable biomass and nutrient composition losses. Among the cover crops, faba bean results in the highest mineral, protein, and prebiotic carbohydrate concentrations in subsequent kale crops but ryegrass increases kale biomass production. Results also demonstrated a significant interaction between kale variety and organic cover crop with respect to biomass and nutrient concentration. Future organic nutritional breeding of kale is possible by selecting cultivars that perform well following different cover crops.


Subject(s)
Brassica/growth & development , Crops, Agricultural/growth & development , Fabaceae/physiology , Organic Agriculture/methods , Biomass , Brassica/chemistry , Carbohydrates/analysis , Crops, Agricultural/chemistry , Female , Humans , Lolium , Male , Minerals/analysis , Nutritive Value , Plant Leaves/chemistry , Plant Proteins/analysis , Prebiotics/analysis , Recommended Dietary Allowances , Species Specificity
5.
Front Nutr ; 6: 38, 2019.
Article in English | MEDLINE | ID: mdl-31024922

ABSTRACT

Pulse crops such as lentil, common bean, and chickpea are rich in protein, low digestible carbohydrates, and range of micronutrients. The detailed information of low digestible carbohydrates also known as "prebiotic carbohydrate" profiles of commonly consumed pulse market classes and their impact on human health are yet to be studied. The objective of this study was to determine the profiles of prebiotic carbohydrates in two commonly consumed lentil market classes, seven common bean market classes, and two chickpea market classes. After removing fat and protein, total carbohydrates averaged 51/100 g for lentil, 53/100 g for common bean, and 54/100 g for chickpea. Among the portion of total carbohydrates, lentil showed 12/100 g of prebiotic carbohydrates (sugar alcohols, raffinose family oligosaccharides, fructooligosaccharides, hemicellulose, cellulose, and resistant starch), 15/100 g in common bean, and 12/100 g in chickpea. Prebiotic carbohydrate concentrations within the market classes for each crop were significantly different (P < 0.05). In conclusion, these three pulses are rich in prebiotic carbohydrates, and considering the variation in these concentrations in the present materials, it is possible to breed appropriate market classes of pulses with high levels of prebiotic carbohydrates.

6.
J Agric Food Chem ; 66(33): 8805-8813, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30102041

ABSTRACT

Lentil, a moderate-energy high-protein pulse crop, provides significant amounts of essential nutrients for healthy living. The objective of this study was to determine if a lentil-based diet affects food and energy intake, body weight, percent body fat, liver weight, and body plasma triacylglycerols (TGs) as well as the composition of fecal microbiota in rats. A total of 36 Sprague-Dawley rats were treated with either a standard diet, a 3.5% high amylose corn starch diet, or a 70.8% red lentil diet for 6 weeks. By week 6, rats fed the lentil diet had significantly lower mean body weight (443 ± 47 g/rat) than those fed the control (511 ± 51 g/rat) or corn (502 ± 38 g/rat) diets. Further, mean percent body fat and TG concentration were lower, and lean body mass was higher in rats fed the lentil diet than those fed the corn diet. Fecal abundance of Actinobacteria and Bacteriodetes were greater in rats fed the lentil or corn starch diets than those fed the control diet. Fecal abundance of Firmicutes, a bacterial phylum comprising multiple pathogenic species, decreased in rats fed the lentil and high-amylose corn starch diets vs the control diet. The lentil-based diet decreased body weight, percent body fat, and plasma triacylglycerols in rats and suppressed intestinal colonization by pathogens.


Subject(s)
Gastrointestinal Microbiome , Lens Plant/metabolism , Obesity/drug therapy , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Biomarkers/analysis , Energy Intake , Feces/microbiology , Humans , Lens Plant/chemistry , Male , Obesity/metabolism , Obesity/microbiology , Rats , Rats, Sprague-Dawley , Seeds/chemistry , Seeds/metabolism , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...