Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(51): 59746-59759, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38108280

ABSTRACT

Reversible addition-fragmentation chain transfer polymerization has been used in various applications such as preparing nanoparticles, stimulus-responsive polymers, and hydrogels. In this study, the combination of this polymerization method and Cu(I)-catalyzed azide-alkyne cycloaddition click chemistry was used to prepare the multifunctional glyco-diblock copolymer P(PEG-co-AM)-b-PF, which is composed of mannosides for cell targeting, poly(ethylene glycol) (PEG) for biocompatibility, and aryl-aldehyde moieties for enzyme immobilization. The alkyne group in the polymer structure enables the alternation for other azide-conjugated monomers. The stepwise synthesis of the polymers was fully characterized. P(PEG-co-AM)-b-PF was self-assembled into polymeric nanoparticles (BDOX-GOx@NPs) for glucose oxidase immobilization through Schiff base formation and for encapsulating the prodrug of arylboronate-linked doxorubicin (BA-DOX) under optimal conditions. Glucose oxidase in BDOX-GOx@NPs catalyzes glucose oxidation to produce gluconic acid and H2O2, which cause oxidative stress. Glucose oxidase also consumes glucose, causing starvation in cancer cells. The produced H2O2 can selectively activate the anticancer prodrug BA-DOX for chemotherapy. In vitro data indicate that GOx and the prodrug BA-DOX present inside BDOX-GOx@NPs exhibit higher stability than free glucose oxidase with a favorable active DOX release profile. MDA-MB-231 cells, which express mannose receptors, were used to establish a model in this study. The bioactivity of the nanoplatform in the two- and three-dimensional models of MDA-MB-231 cancer cells was investigated to ascertain its antitumor efficacy.


Subject(s)
Nanoparticles , Prodrugs , Polymerization , MDA-MB-231 Cells , Glucose Oxidase , Click Chemistry , Azides , Hydrogen Peroxide , Drug Carriers , Polymers/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry , Prodrugs/chemistry , Nanoparticles/chemistry , Alkynes , Glucose
2.
Am J Cancer Res ; 13(10): 4693-4707, 2023.
Article in English | MEDLINE | ID: mdl-37970360

ABSTRACT

Protein kinase C delta (PKCδ) is prominently expressed in the nuclei of EGFR-mutant lung cancer cells, and its presence correlates with poor survival of the patients undergoing EGFR inhibitor treatment. The inhibition of PKCδ has emerged as a viable approach to overcoming resistance to EGFR inhibitors. However, clinical-grade PKCδ inhibitors are not available, highlighting the urgent needs for the development of effective drugs that target PKCδ. In this study, we designed and synthesized a series of inhibitors based on the chemical structure of a pan PKC inhibitor sotrastaurin. This was achieved by incorporating a triazole ring group into the original sotrastaurin configuration. Our findings revealed that the sotrastaurin derivative CMU-0101 exhibited an elevated affinity for binding to the ATP-binding site of PKCδ and effectively suppressed nuclear PKCδ in resistant cells in comparison to sotrastaurin. Furthermore, we demonstrated that CMU-0101 synergistically enhanced EGFR TKI gefitinib sensitivity in resistant cells. Altogether, our study provides a promising strategy for designing and synthesizing PKCδ inhibitors with improved efficacy, and suggests CMU-0101 as a potential lead compound to inhibit PKCδ and overcome TKI resistance in lung cancers.

3.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35163281

ABSTRACT

Calycosin, a bioactive isoflavonoid isolated from root extracts of Astragalus membranaceus, has been reported to inhibit melanogenesis, the mechanism of which remains undefined. In this study, we interrogated the mechanistic basis by which calycosin inhibits melanin production in two model systems, i.e., B16F10 melanoma cells and zebrafish embryos. Calycosin was effective in protecting B16F10 cells from α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and tyrosinase activity. This anti-melanogenic effect was accompanied by decreased expression levels of microphthalmia-associated transcription factor (MITF), a key protein controlling melanin synthesis, and its target genes tyrosinase and tyrosinase-related protein-2 (TRP-2) in calycosin-treated cells. Mechanistically, we obtained the first evidence that calycosin-mediated MITF downregulation was attributable to its ability to block signaling pathways mediated by cAMP response element-binding protein (CREB) and p38 MAP kinase. The protein kinase A (PKA) inhibitor H-89 and p38 inhibitor SB203580 validated the premise that calycosin inhibits melanin synthesis and tyrosinase activity by regulating the PKA/CREB and p38 MAPK signaling pathways. Moreover, the in vivo anti-melanogenic efficacy of calycosin was manifested by its ability to suppress body pigmentation and tyrosinase activity in zebrafish embryos. Together, these data suggested the translational potential of calycosin to be developed as skin-lightening cosmeceuticals.


Subject(s)
Isoflavones/pharmacology , Melanins/metabolism , Animals , Astragalus propinquus/metabolism , Cell Line, Tumor , Cyclic AMP Response Element-Binding Protein/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Down-Regulation/drug effects , Down-Regulation/genetics , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Isoflavones/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Melanoma/drug therapy , Melanoma/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Phosphorylation/drug effects , Plant Extracts/pharmacology , Plant Roots , Signal Transduction/drug effects , Zebrafish/metabolism , alpha-MSH/pharmacology , p38 Mitogen-Activated Protein Kinases/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
4.
Sci Rep ; 9(1): 2147, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30765775

ABSTRACT

For a newly synthesized compound, identifying its target protein is a slow but pivotal step toward understand its pharmacologic mechanism. In this study, we systemically synthesized novel manzamine derivatives and chose 1-(9'-methyl-3'-carbazole)-3, 4-dihydro-ß-carboline (MCDC) as an example to identify its target protein and function. MCDC had potent toxicity against several cancer cells. To identify its target protein, we first used a docking screen to predict macrophage migration inhibitory factor (MIF) as the potential target. Biochemical experiments, including mutation analysis and hydrogen-deuterium exchange assays, validated the binding of MCDC to MIF. Furthermore, MCDC was shown by microarrays to interfere with the cell cycle of breast cancer MCF7 cells. The activated signaling pathways included AKT phosphorylation and S phase-related proteins. Our results showed MIF as a potential direct target of a newly synthesized manzamine derivative, MCDC, and its pharmacologic mechanisms.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Carbazoles/pharmacology , Carbolines/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Intramolecular Oxidoreductases/antagonists & inhibitors , Macrophage Migration-Inhibitory Factors/antagonists & inhibitors , Antineoplastic Agents/chemistry , Apoptosis , Biomarkers, Tumor , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carbazoles/chemistry , Carbolines/chemistry , Cell Cycle , Cell Proliferation , Female , Gene Expression Profiling , Humans , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Phosphorylation , Tumor Cells, Cultured
5.
Org Lett ; 11(19): 4466-9, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19775188

ABSTRACT

A solid-state melt reaction (SSMR) has been demonstrated via a domino process for the synthesis of tetracyclic chromenopyran pyrimidinedione frameworks using Baylis-Hillman derivatives through in situ formation of an olefin followed by an intramolecular [4 + 2] cycloaddition reaction sequence. The tetracyclic frameworks were obtained without using catalyst and solvent in a highly stereoselective and stereospecific fashion. The isolated yield is excellent and does not require column chromatography purification to obtain the pure product.

SELECTION OF CITATIONS
SEARCH DETAIL
...