Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Endocr Relat Cancer ; 31(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38289290

ABSTRACT

Abstract: Endocrine tumors are a heterogeneous cluster of malignancies that originate from cells that can secrete hormones. Examples include, but are not limited to, thyroid cancer, adrenocortical carcinoma, and neuroendocrine tumors. Many endocrine tumors are relatively slow to proliferate, and as such, they often do not respond well to common antiproliferative chemotherapies. Therefore, increasing attention has been given to targeted therapies and immunotherapies in these diseases. However, in contrast to other cancers, many endocrine tumors are relatively rare, and as a result, less is understood about their biology, including specific targets for intervention. Our limited understanding of such tumors is in part due to a limitation in model systems that accurately recapitulate and enable mechanistic exploration of these tumors. While mouse models and 2D cell cultures exist for some endocrine tumors, these models often may not accurately model nuances of human endocrine tumors. Mice differ from human endocrine physiology and 2D cell cultures fail to recapitulate the heterogeneity and 3D architectures of in vivo tumors. To complement these traditional cancer models, bioengineered 3D tumor models, such as organoids and tumor-on-a-chip systems, have advanced rapidly in the past decade. However, these technologies have only recently been applied to most endocrine tumors. In this review we provide descriptions of these platforms, focusing on thyroid, adrenal, and neuroendocrine tumors and how they have been and are being applied in the context of endocrine tumors.


Subject(s)
Adrenal Cortex Neoplasms , Endocrine Gland Neoplasms , Neuroendocrine Tumors , Thyroid Neoplasms , Humans , Mice , Animals , Endocrine Gland Neoplasms/pathology , Thyroid Neoplasms/pathology , Organoids/pathology , Neuroendocrine Tumors/pathology , Adrenal Cortex Neoplasms/pathology
2.
Sci Rep ; 13(1): 15508, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726363

ABSTRACT

Adrenocortical carcinoma (ACC) has a poor prognosis, and no new drugs have been identified in decades. The absence of drug development can partly be attributed to a lack of preclinical models. Both animal models and 2D cell cultures of ACC fail to accurately mimic the disease, as animal physiology is inherently different than humans, and 2D cultures fail to represent the crucial 3D architecture. Organoids and other small 3D in vitro models of tissues or tumors can model certain complexities of human in vivo biology; however, this technology has largely yet to be applied to ACC. In this study, we describe the generation of 3D tumor constructs from an established ACC cell line, NCI-H295R. NCI-H295R cells were encapsulated to generate 3D ACC constructs. Tumor constructs were assessed for biomarker expression, viability, proliferation, and cortisol production. In addition, matrix metalloproteinase (MMP) functionality was assessed directly using fluorogenic MMP-sensitive biosensors and through infusion of NCI-H295R cells into a metastasis-on-a-chip microfluidic device platform. ACC tumor constructs showed expression of biomarkers associated with ACC, including SF-1, Melan A, and inhibin α. Treatment of ACC tumor constructs with chemotherapeutics demonstrated decreased drug sensitivity compared to 2D cell culture. Since most tumor cells migrate through tissue using MMPs to break down extracellular matrix, we validated the utility of ACC tumor constructs by integrating fluorogenic MMP-sensitive peptide biosensors within the tumor constructs. Lastly, in our metastasis-on-a-chip device, NCI-H295R cells successfully engrafted in a downstream lung cell line-based construct, but invasion distance into the lung construct was decreased by MMP inhibition. These studies, which would not be possible using 2D cell cultures, demonstrated that NCI-H295R cells secreted active MMPs that are used for invasion in 3D. This work represents the first evidence of a 3D tumor constructs platform for ACC that can be deployed for future mechanistic studies as well as development of new targets for intervention and therapies.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Carcinoma , Animals , Humans , Adrenocortical Carcinoma/drug therapy , Adrenal Cortex Neoplasms/drug therapy , Proteolysis , Biological Transport , Matrix Metalloproteinases
3.
bioRxiv ; 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-36747748

ABSTRACT

Adrenocortical carcinoma (ACC) has a poor prognosis, and no new drugs have been identified in decades. The absence of drug development can partly be attributed to a lack of preclinical models. Both animal models and 2D cell cultures of ACC fail to accurately mimic the disease, as animal physiology is inherently different than humans, and 2D cultures fail to represent the crucial 3D architecture. Organoids and other small 3D in vitro models of tissues or tumors can model certain complexities of human in vivo biology; however, this technology has largely yet to be applied to ACC. In this study, we describe the generation of 3D tumor constructs from an established ACC cell line, NCI-H295R. NCI-H295R cells were encapsulated to generate 3D ACC constructs. Tumor constructs were assessed for biomarker expression, viability, proliferation, and cortisol production. In addition, matrix metalloproteinase (MMP) functionality was assessed directly using fluorogenic MMP-sensitive biosensors and through infusion of NCI-H295R cells into a metastasis-on-a-chip microfluidic device platform. ACC tumor constructs showed expression of biomarkers associated with ACC, including SF-1, Melan A, and inhibin alpha. Treatment of ACC tumor constructs with chemotherapeutics demonstrated decreased drug sensitivity compared to 2D cell culture. Since most tumor cells migrate through tissue using MMPs to break down extracellular matrix, we validated the utility of ACC tumor constructs by integrating fluorogenic MMP-sensitive peptide biosensors within the tumor constructs. Lastly, in our metastasis-on-a-chip device, NCI-H295R cells successfully engrafted in a downstream lung cell line-based construct, but invasion distance into the lung construct was decreased by MMP inhibition. These studies, which would not be possible using 2D cell cultures, demonstrated that NCI-H295R cells secreted active MMPs that are used for invasion in 3D. This work represents the first evidence of a 3D tumor constructs platform for ACC that can be deployed for future mechanistic studies as well as development of new targets for intervention and therapies.

4.
Biotechnol Bioeng ; 120(4): 1108-1119, 2023 04.
Article in English | MEDLINE | ID: mdl-36544242

ABSTRACT

Glioblastoma (GBM) is the most common form of brain cancer. Even with aggressive treatment, tumor recurrence is almost universal and patient prognosis is poor because many GBM cell subpopulations, especially the mesenchymal and glioma stem cell populations, are resistant to temozolomide (TMZ), the most commonly used chemotherapeutic in GBM. For this reason, there is an urgent need for the development of new therapies that can more effectively treat GBM. Several recent studies have indicated that high expression of connexin 43 (Cx43) in GBM is associated with poor patient outcomes. It has been hypothesized that inhibition of the Cx43 hemichannels could prevent TMZ efflux and sensitize otherwise resistance cells to the treatment. In this study, we use a three-dimensional organoid model of GBM to demonstrate that combinatorial treatment with TMZ and αCT1, a Cx43 mimetic peptide, significantly improves treatment efficacy in certain populations of GBM. Confocal imaging was used to visualize changes in Cx43 expression in response to combinatorial treatment. These results indicate that Cx43 inhibition should be pursued further as an improved treatment for GBM.


Subject(s)
Glioblastoma , Glioma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/metabolism , Connexin 43/metabolism , Connexin 43/pharmacology , Connexin 43/therapeutic use , Signal Transduction , Cell Line, Tumor , Glioma/drug therapy , Glioma/metabolism , Peptides/pharmacology
5.
Biomed Mater ; 18(1)2022 12 02.
Article in English | MEDLINE | ID: mdl-36332268

ABSTRACT

Organoids, and in particular patient-derived organoids, have emerged as crucial tools for cancer research. Our organoid platform, which has supported patient-derived tumor organoids (PTOs) from a variety of tumor types, has been based on the use of hyaluronic acid (HA) and collagen, or gelatin, hydrogel bioinks. One hurdle to high throughput PTO biofabrication is that as high-throughput multi-well plates, bioprinted volumes have increased risk of contacting the sides of wells. When this happens, surface tension causes bioinks to fall flat, resulting in 2D cultures. To address this problem, we developed an organoid immersion bioprinting method-inspired by the FRESH printing method-in which organoids are bioprinted into support baths in well plates. The bath-in this case an HA solution-shields organoids from the well walls, preventing deformation. Here we describe an improvement to our approach, based on rheological assessment of previous gelatin baths versus newer HA support baths, combined with morphological assessment of immersion bioprinted organoids. HA print baths enabled more consistent organoid volumes and geometries. We optimized the printing parameters of this approach using a cell line. Finally, we deployed our optimized immersion bioprinting approach into a drug screening application, using PTOs derived from glioma biospecimens, and a lung adenocarcinoma brain metastasis. In these studies, we showed a general dose dependent response to an experimental p53 activator compound and temozolomide (TMZ), the drug most commonly given to brain tumor patients. Responses to the p53 activator compound were effective across all PTO sets, while TMZ responses were observed, but less pronounced, potentially explained by genetic and epigenetic states of the originating tumors. The studies presented herein showcase a bioprinting methodology that we hope can be used in increased throughput settings to help automate biofabrication of PTOs for drug development-based screening studies and precision medicine applications.


Subject(s)
Bioprinting , Brain Neoplasms , Humans , Bioprinting/methods , Organoids , Hyaluronic Acid , Gelatin , Immersion , Tumor Suppressor Protein p53 , Hydrogels , Collagen , Brain Neoplasms/therapy , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds
6.
Sci Rep ; 12(1): 13865, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35974123

ABSTRACT

Merkel cell carcinoma (MCC) is a rare neuroendocrine cutaneous cancer, with incidence of less than 1/100,000, low survival rates and variable response to chemotherapy or immunotherapy. Herein we explore the application of patient tumor organoids (PTOs) in modeling personalized research in this rare malignancy. Unsorted and non-expanded MCC tumor cells were isolated from surgical specimens and suspended in an ECM based hydrogel, along with patient matched blood and lymph node tissue to generate immune enhanced organoids (iPTOs). Organoids were treated with chemotherapy or immunotherapy agents and efficacy was determined by post-treatment viability. Nine specimens from seven patients were recruited from December 2018-January 2022. Establishment rate was 88.8% (8/9) for PTOs and 77.8% (7/9) for iPTOs. Histology on matched patient tissues and PTOs demonstrated expression of MCC markers. Chemotherapy response was exhibited in 4/6 (66.6%) specimens with cisplatin and doxorubicin as the most effective agents (4/6 PTO sets) while immunotherapy was not effective in tested iPTO sets. Four specimens from two patients demonstrated resistance to pembrolizumab, correlating with the corresponding patient's treatment response. Routine establishment and immune enhancement of MCC PTOs is feasible directly from resected surgical specimens allowing for personalized research and exploration of treatment regimens in the preclinical setting.


Subject(s)
Carcinoma, Merkel Cell , Skin Neoplasms , Carcinoma, Merkel Cell/metabolism , Humans , Immunotherapy/adverse effects , Organoids/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism
7.
Ann Surg Oncol ; 29(12): 7354-7367, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35780216

ABSTRACT

INTRODUCTION: Sarcoma clinical outcomes have been stagnant for decades due to heterogeneity of primaries, lack of comprehensive preclinical models, and rarity of disease. We hypothesized that engineering hydrogel-based sarcoma organoids directly from the patient without xenogeneic extracellular matrices (ECMs) or growth factors is routinely feasible and allows rare tumors to remain viable as avatars for personalized research. METHODS: Surgically resected sarcomas (angiosarcomas, leiomyosarcoma, gastrointestinal stromal tumor, liposarcoma, myxofibrosarcoma, dermatofibrosarcoma protuberans [DFSP], and pleiomorphic abdominal sarcoma) were dissociated and incorporated into a hyaluronic acid and collagen-based ECM hydrogel and screened for chemotherapy efficacy. A subset of organoids was enriched with a patient-matched immune system for screening of immunotherapy efficacy (iPTOs). Response to treatment was assessed using LIVE/DEAD staining and metabolic assays. RESULTS: Sixteen sarcomas were biofabricated into three-dimensional (3D) patient-specific sarcoma organoids with a 100% success rate. Average time from organoid development to initiation of drug testing was 7 days. Enrichment of organoids with immune system components derived from either peripheral blood mononuclear cells or lymph node cells was performed in 10/16 (62.5%) patients; 4/12 (33%) organoids did not respond to chemotherapy, while response to immunotherapy was observed in 2/10 (20%) iPTOs. CONCLUSIONS: A large subset of sarcoma organoids does not exhibit response to chemotherapy or immunotherapy, as currently seen in clinical practice. Routine development of sarcoma hydrogel-based organoids directly from the operating room is a feasible platform, allowing for such rare tumors to remain viable for personalized translational research.


Subject(s)
Sarcoma , Soft Tissue Neoplasms , Adult , Humans , Hyaluronic Acid/metabolism , Hydrogels , Leukocytes, Mononuclear , Operating Rooms , Organoids/pathology , Sarcoma/pathology , Soft Tissue Neoplasms/pathology , Translational Research, Biomedical
10.
Adv Drug Deliv Rev ; 180: 114067, 2022 01.
Article in English | MEDLINE | ID: mdl-34822927

ABSTRACT

In recent years, many research groups have begun to utilize bioengineered in vitro models of cancer to study mechanisms of disease progression, test drug candidates, and develop platforms to advance personalized drug treatment options. Due to advances in cell and tissue engineering over the last few decades, there are now a myriad of tools that can be used to create such in vitro systems. In this review, we describe the considerations one must take when developing model systems that accurately mimic the in vivo tumor microenvironment (TME) and can be used to answer specific scientific questions. We will summarize the importance of cell sourcing in models with one or multiple cell types and outline the importance of choosing biomaterials that accurately mimic the native extracellular matrix (ECM) of the tumor or tissue that is being modeled. We then provide examples of how these two components can be used in concert in a variety of model form factors and conclude by discussing how biofabrication techniques such as bioprinting and organ-on-a-chip fabrication can be used to create highly reproducible complex in vitro models. Since this topic has a broad range of applications, we use the final section of the review to dive deeper into one type of cancer, glioblastoma, to illustrate how these components come together to further our knowledge of cancer biology and move us closer to developing novel drugs and systems that improve patient outcomes.


Subject(s)
Glioblastoma/pathology , Tissue Engineering/methods , Tumor Microenvironment/physiology , Animals , Biocompatible Materials/metabolism , Bioprinting/methods , Extracellular Matrix/metabolism , Humans , In Vitro Techniques , Lab-On-A-Chip Devices , Precision Medicine/methods
11.
Front Bioeng Biotechnol ; 8: 538663, 2020.
Article in English | MEDLINE | ID: mdl-33042963

ABSTRACT

Glioblastoma (GBM) is a lethal, incurable form of cancer in the brain. Even with maximally aggressive surgery and chemoradiotherapy, median patient survival is 14.5 months. These tumors infiltrate normal brain tissue, are surgically incurable, and universally recur. GBMs are characterized by genetic, epigenetic, and microenvironmental heterogeneity, and they evolve spontaneously over time and as a result of treatment. However, tracking such heterogeneity in real time in response to drug treatments has been impossible. Here we describe the development of an in vitro GBM tumor organoid model that is comprised of five distinct cellular subpopulations (4 GBM cell lines that represent GBM subpopulations and 1 astrocyte line), each fluorescently labeled with a different color. These multi-cell type GBM organoids are then embedded in a brain-like hyaluronic acid hydrogel for subsequent studies involving drug treatments and tracking of changes in relative numbers of each fluorescently unique subpopulation. This approach allows for the visual assessment of drug influence on individual subpopulations within GBM, and in future work can be expanded to supporting studies using patient tumor biospecimen-derived cells for personalized diagnostics.

12.
Ann Surg Oncol ; 27(13): 4950-4960, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32632882

ABSTRACT

BACKGROUND: Chemotherapy dosing duration and perfusion temperature vary significantly in HIPEC protocols. This study investigates patient-derived tumor organoids as a platform to identify the most efficacious perfusion protocol in a personalized approach. PATIENTS AND METHODS: Peritoneal tumor tissue from 15 appendiceal and 8 colon cancer patients who underwent CRS/HIPEC were used for personalized organoid development. Organoids were perfused in parallel at 37 and 42 °C with low- and high-dose oxaliplatin (200 mg/m2 over 2 h vs. 460 mg/m2 over 30 min) and MMC (40 mg/3L over 2 h). Viability assays were performed and pooled for statistical analysis. RESULTS: An adequate organoid number was generated for 75% (6/8) of colon and 73% (11/15) of appendiceal patients. All 42 °C treatments displayed lower viability than 37 °C treatments. On pooled analysis, MMC and 200 mg/m2 oxaliplatin displayed no treatment difference for either appendiceal or colon organoids (19% vs. 25%, p = 0.22 and 27% vs. 31%, p = 0.55, respectively), whereas heated MMC was superior to 460 mg/m2 oxaliplatin in both primaries (19% vs. 54%, p < 0.001 and 27% vs. 53%, p = 0.002, respectively). In both appendiceal and colon tumor organoids, heated 200 mg/m2 oxaliplatin displayed increased cytotoxicity as compared with 460 mg/m2 oxaliplatin (25% vs. 54%, p < 0.001 and 31% vs. 53%, p = 0.008, respectively). CONCLUSIONS: Organoids treated with MMC or 200 mg/m2 heated oxaliplatin for 2 h displayed increased susceptibility in comparison with 30-min 460 mg/m2 oxaliplatin. Optimal perfusion protocol varies among patients, and organoid technology may offer a platform for tailoring HIPEC conditions to the individual patient level.


Subject(s)
Hyperthermic Intraperitoneal Chemotherapy , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols , Chemotherapy, Cancer, Regional Perfusion , Colorectal Neoplasms/therapy , Cytoreduction Surgical Procedures , Humans , Mitomycin , Organoids , Perfusion
13.
Micromachines (Basel) ; 11(2)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085455

ABSTRACT

The current drug development pipeline takes approximately fifteen years and $2.6 billion to get a new drug to market. Typically, drugs are tested on two-dimensional (2D) cell cultures and animal models to estimate their efficacy before reaching human trials. However, these models are often not representative of the human body. The 2D culture changes the morphology and physiology of cells, and animal models often have a vastly different anatomy and physiology than humans. The use of bioengineered human cell-based organoids may increase the probability of success during human trials by providing human-specific preclinical data. They could also be deployed for personalized medicine diagnostics to optimize therapies in diseases such as cancer. However, one limitation in employing organoids in drug screening has been the difficulty in creating large numbers of homogeneous organoids in form factors compatible with high-throughput screening (e.g., 96- and 384-well plates). Bioprinting can be used to scale up deposition of such organoids and tissue constructs. Unfortunately, it has been challenging to 3D print hydrogel bioinks into small-sized wells due to well-bioink interactions that can result in bioinks spreading out and wetting the well surface instead of maintaining a spherical form. Here, we demonstrate an immersion printing technique to bioprint tissue organoids in 96-well plates to increase the throughput of 3D drug screening. A hydrogel bioink comprised of hyaluronic acid and collagen is bioprinted into a viscous gelatin bath, which blocks the bioink from interacting with the well walls and provides support to maintain a spherical form. This method was validated using several cancerous cell lines, and then applied to patient-derived glioblastoma (GBM) and sarcoma biospecimens for drug screening.

14.
Ann Biomed Eng ; 48(3): 940-952, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31020445

ABSTRACT

Colorectal cancer is subject to a high rate of mutations, with late stage tumors often containing many mutations. These tumors are difficult to treat, and even with the recently implemented methods of personalized medicine at modern hospitals aiming to narrow treatments, a gap still exists. Proper modeling of these tumors may help to recommend optimal treatments for individual patients, preferably utilizing a model that maintains proper signaling in respect to the derived parent tissue. In this study, we utilized an extracellular matrix-derived hydrogel to create a 3D micro-tumor construct platform capable of both supporting cells for long time durations and for high throughput drug screening. Experiments with cell lines demonstrated long-term viability with maintenance of cell proliferation. Furthermore, studies with several chemotherapeutics utilizing different mechanisms of action displayed differences in efficacy in comparing 3D and 2D cultures. Finally, patient colorectal tumor tissue was acquired and employed to reconstruct micro-tumor constructs, providing a system for the testing of novel chemotherapeutics against tumors in a patient-specific manner. Collectively, the results describe a system capable of high throughput testing while maintaining important characteristics of the parent tissue.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Drug Screening Assays, Antitumor , Cell Line, Tumor , Cell Survival/drug effects , Humans , Hydrogels , Precision Medicine , Tissue Engineering
15.
Ann Surg Oncol ; 27(6): 1956-1967, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31858299

ABSTRACT

INTRODUCTION: We hypothesized that engineering a combined lymph node/melanoma organoid from the same patient would allow tumor, stroma, and immune system to remain viable for personalized immunotherapy screening. METHODS: Surgically obtained matched melanoma and lymph node biospecimens from the same patient were transferred to the laboratory and washed with saline, antibiotic, and red blood cell lysis buffer. Biospecimens were dissociated, incorporated into an extracellular matrix (ECM)-based hydrogel system, and biofabricated into three dimensional (3D) mixed melanoma/node organoids. Cells were not sorted, so as to preserve tumor heterogeneity, including stroma and immune cell components, resulting in immune-enhanced patient tumor organoids (iPTOs). Organoid sets were screened in parallel with nivolumab, pembrolizumab, ipilimumab, and dabrafenib/trametinib for 72 h. LIVE/DEAD staining and quantitative metabolism assays recorded relative drug efficacy. Histology and immunohistochemistry were used to compare tumor melanoma cells with organoid melanoma cells. Lastly, node-enhanced iPTOs were employed to activate patient-matched peripheral blood T cells for killing of tumor cells in naïve PTOs. RESULTS: Ten biospecimen sets obtained from eight stage III and IV melanoma patients were reconstructed as symbiotic immune/tumor organoids between September 2017 and June 2018. Successful establishment of viable organoid sets was 90% (9/10), although organoid yield varied with biospecimen size. Average time from organoid development to initiation of immunotherapy testing was 7 days. In three patients for whom a node was not available, it was substituted with peripheral blood mononuclear cells. iPTO response to immunotherapy was similar to specimen clinical response in 85% (6/7) patients. In an additional pilot study, peripheral T cells were circulated through iPTOs, and subsequently transferred to naïve PTOs from the same patient, resulting in tumor killing, suggesting a possible role of iPTOs in generating adaptive immunity. CONCLUSION: Development of 3D mixed immune-enhanced tumor/node organoids is a feasible platform, allowing individual patient immune system and tumor cells to remain viable for studying of personalized immunotherapy response.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Drug Screening Assays, Antitumor/methods , Leukocytes, Mononuclear/drug effects , Melanoma/pathology , Models, Biological , Organoids/pathology , Feasibility Studies , Humans , Immunotherapy , Lymph Nodes/drug effects , Lymph Nodes/pathology , Melanoma/drug therapy , Organoids/drug effects , Pilot Projects , Precision Medicine
16.
Ann Surg Oncol ; 26(1): 139-147, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30414038

ABSTRACT

INTRODUCTION: We have hypothesized that biofabrication of appendiceal tumor organoids allows for a more personalized clinical approach and facilitates research in a rare disease. METHODS: Appendiceal cancer specimens obtained during cytoreduction with hyperthermic intraperitoneal chemotherapy procedures (CRS/HIPEC) were dissociated and incorporated into an extracellular matrix-based hydrogel system as three-dimensional (3D), patient-specific tumor organoids. Cells were not sorted, preserving tumor heterogeneity, including stroma and immune cell components. Following establishment of organoid sets, chemotherapy drugs were screened in parallel. Live/dead staining and quantitative metabolism assays recorded which chemotherapies were most effective in killing cancer cells for a specific patient. Maintenance of cancer phenotypes were confirmed by using immunohistochemistry. RESULTS: Biospecimens from 12 patients were applied for organoid development between November 2016 and May 2018. Successful establishment rate of viable organoid sets was 75% (9/12). Average time from organoid development to chemotherapy testing was 7 days. These tumors included three high-grade appendiceal (HGA) and nine low-grade appendiceal (LGA) primaries obtained from sites of peritoneal metastasis. All tumor organoids were tested with chemotherapeutic agents exhibited responses that were either similar to the patient response or within the variability of the expected clinical response. More specifically, HGA tumor organoids derived from different patients demonstrated variable chemotherapy tumor-killing responses, whereas LGA organoids tested with the same regimens showed no response to chemotherapy. One LGA set of organoids was immune-enhanced with cells from a patient-matched lymph node to demonstrate feasibility of a symbiotic 3D reconstruction of a patient matched tumor and immune system component. CONCLUSIONS: Development of 3D appendiceal tumor organoids is feasible even in low cellularity LGA tumors, allowing for individual patient tumors to remain viable for research and personalized drug screening.


Subject(s)
Antineoplastic Agents/pharmacology , Appendiceal Neoplasms/pathology , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor/methods , Models, Biological , Organoids/pathology , Peritoneal Neoplasms/pathology , Appendiceal Neoplasms/drug therapy , Cell Survival , Feasibility Studies , Humans , Organoids/drug effects , Peritoneal Neoplasms/drug therapy , Precision Medicine , Tumor Cells, Cultured
17.
Gels ; 3(3)2017 Jul 13.
Article in English | MEDLINE | ID: mdl-30920523

ABSTRACT

Glioblastoma (GBM) is one of most aggressive forms of brain cancer, with a median survival time of 14.6 months following diagnosis. This low survival rate could in part be attributed to the lack of model systems of this type of cancer that faithfully recapitulate the tumor architecture and microenvironment seen in vivo in humans. Therapeutic studies would provide results that could be translated to the clinic efficiently. Here, we assess the role of the tumor microenvironment physical parameters on the tumor, and its potential use as a biomarker using a hyaluronic acid hydrogel system capable of elastic modulus tuning and dynamic elastic moduli changes. Experiments were conducted to assess the sensitivity of glioblastoma cell populations with different mutations to varying elastic moduli. Cells with aberrant epithelial growth factor receptor (EGFR) expression have a predilection for a stiffer environment, sensing these parameters through focal adhesion kinase (FAK). Importantly, the inhibition of FAK or EGFR generally resulted in reversed elastic modulus preference. Lastly, we explore the concept of therapeutically targeting the elastic modulus and dynamically reducing it via chemical or enzymatic degradation, both showing the capability to reduce or stunt proliferation rates of these GBM populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...