Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37745508

ABSTRACT

Plasmodium falciparum, the malaria-causing parasite, is a leading cause of infection-induced deaths worldwide. The preferred treatment approach is artemisinin-combination therapy, which couples fast-acting artemisinin derivatives with longer-acting drugs like lumefantrine, mefloquine, and amodiaquine. However, the urgency for new treatments has risen due to the parasite's growing resistance to existing therapies. Our study shows that a common characteristic of the P. falciparum proteome - stretches of poly-lysine residues such as those found in proteins related to adhesion and pathogenicity - can serve as an effective peptide treatment for infected erythrocytes. A single dose of these poly-basic peptides can successfully diminish parasitemia in human erythrocytes in vitro with minimal toxicity. The effectiveness of the treatment correlates with the length of the poly-lysine peptide, with 30 lysine peptides supporting the eradication of erythrocytic parasites within 72 hours. PEG-ylation of the poly-lysine peptides or utilizing poly-lysine dendrimers and polymers further increases parasite clearance efficiency and bolsters the stability of these potential new therapeutics. Lastly, our affinity pull-downs and mass-spectrometry identify P. falciparum's outer membrane proteins as likely targets for polybasic peptide medications. Since poly-lysine dendrimers are already FDA-approved for drug delivery, their adaptation as antimalarial drugs presents a promising new therapeutic strategy.

2.
Nat Chem Biol ; 18(11): 1204-1213, 2022 11.
Article in English | MEDLINE | ID: mdl-35953549

ABSTRACT

The genome of a eukaryotic cell is often vulnerable to both intrinsic and extrinsic threats owing to its constant exposure to a myriad of heterogeneous compounds. Despite the availability of innate DNA damage responses, some genomic lesions trigger malignant transformation of cells. Accurate prediction of carcinogens is an ever-challenging task owing to the limited information about bona fide (non-)carcinogens. We developed Metabokiller, an ensemble classifier that accurately recognizes carcinogens by quantitatively assessing their electrophilicity, their potential to induce proliferation, oxidative stress, genomic instability, epigenome alterations, and anti-apoptotic response. Concomitant with the carcinogenicity prediction, Metabokiller is fully interpretable and outperforms existing best-practice methods for carcinogenicity prediction. Metabokiller unraveled potential carcinogenic human metabolites. To cross-validate Metabokiller predictions, we performed multiple functional assays using Saccharomyces cerevisiae and human cells with two Metabokiller-flagged human metabolites, namely 4-nitrocatechol and 3,4-dihydroxyphenylacetic acid, and observed high synergy between Metabokiller predictions and experimental validations.


Subject(s)
Artificial Intelligence , Carcinogens , Humans , Carcinogens/toxicity , 3,4-Dihydroxyphenylacetic Acid , Cell Transformation, Neoplastic/genetics , Genomic Instability
SELECTION OF CITATIONS
SEARCH DETAIL
...