Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(3): eadi5791, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38241368

ABSTRACT

The touch dome (TD) keratinocytes are specialized epidermal cells that intimately associate with the light touch sensing Merkel cells (MCs). The TD keratinocytes function as a niche for the MCs and can induce de novo hair follicles upon stimulation; however, how the TD keratinocytes are maintained during homeostasis remains unclear. scRNA-seq identified a specific TD keratinocyte marker, Tenascin-C (TNC). Lineage tracing of Tnc-expressing TD keratinocytes revealed that these cells maintain themselves as an autonomous epidermal compartment and give rise to MCs upon injury. Molecular characterization uncovered that, while the transcriptional and chromatin landscape of the TD keratinocytes is remarkably similar to that of the interfollicular epidermal keratinocytes, it also shares certain molecular signatures with the hair follicle keratinocytes. Our study highlights that the TD keratinocytes in the adult skin have molecular characteristics of keratinocytes of diverse epidermal lineages.


Subject(s)
Keratinocytes , Tenascin , Tenascin/genetics , Epidermis , Skin , Merkel Cells/physiology , Hair Follicle
2.
J Neurosci Methods ; 404: 110060, 2024 04.
Article in English | MEDLINE | ID: mdl-38244848

ABSTRACT

BACKGROUND: Isolation of adult Neural Stem/Progenitor Cells (NSPCs) from their neurogenic niches, is a prerequisite for studies involving culturing of NSPCs as neurospheres or attached monolayers in vitro. The currently available protocols involve the use of multiple animals and expensive reagents to establish the NSPCs culture. NEW METHOD: This unit describes a method to isolate and culture NSPCs from the two neurogenic niches in the mouse brain, the Subventricular Zone (SVZ) and Dentate gyrus (DG)/subgranular zone (SGZ), in an easy and cost-effective manner. RESULTS: NSPCs from SVZ and DG regions of adult mouse brains were isolated and cultured up to passage 15 without losing their stem/progenitor characteristics. These NSPCs could be differentiated into neurons, astrocytes, and oligodendrocytes, revealing its trilineage potential. COMPARISON WITH EXISTING METHODS: This protocol eliminates the need for multiple animals as well as the use of many expensive reagents mentioned in previous protocols, adding to the cost-effectiveness of experiments. In addition, we have effectively reduced the number of steps involved in isolation and propagation, thereby minimizing the chances of contamination. CONCLUSION: Our simplified protocol for the isolation and culturing of adult NSPCs from the SVZ and DG demonstrates a cost-effective and efficient alternative to existing methods, reducing the need for sacrificing many animals and the usage of expensive reagents. This method permits the long-term maintenance of NSPCs' stem/progenitor characteristics and their effective differentiation into the major types of cells in the brain, making it a valuable resource for researchers in the field. BASIC PROTOCOL: Isolation and Culturing of Neural Stem/Progenitor cells from the Sub ventricular Zone and the Dentate Gyrus of the adult mouse brain. SUPPORT PROTOCOL 1: Cryopreservation, and revival of frozen NSPCs. SUPPORT PROTOCOL 2: Preparation of adherent monolayer cultures of neural stem/progenitor cells for the differentiation into multiple lineages SUPPORT PROTOCOL 3: Differentiation of NSPCs to neuronal and glial lineages SUPPORT PROTOCOL 4: Characterization of differentiated cells by immunocytochemistry.


Subject(s)
Lateral Ventricles , Neural Stem Cells , Mice , Animals , Cost-Benefit Analysis , Cell Differentiation , Neurogenesis , Brain , Dentate Gyrus
3.
Exp Brain Res ; 242(1): 1-23, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38015243

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder, prevalent in the elderly population. Neuropathological hallmarks of PD include loss of dopaminergic cells in the nigro-striatal pathway and deposition of alpha-synuclein protein in the neurons and synaptic terminals, which lead to a complex presentation of motor and non-motor symptoms. This review focuses on various aspects of PD, from clinical diagnosis to currently accepted treatment options, such as pharmacological management through dopamine replacement and surgical techniques such as deep brain stimulation (DBS). The review discusses in detail the potential of emerging stem cell-based therapies and gene therapies to be adopted as a cure, in contrast to the present symptomatic treatment in PD. The potential sources of stem cells for autologous and allogeneic stem cell therapy have been discussed, along with the progress evaluation of pre-clinical and clinical trials. Even though recent techniques hold great potential to improve the lives of PD patients, we present the importance of addressing the safety, efficacy, ethical, cost, and regulatory concerns before scaling them to clinical use.


Subject(s)
Parkinson Disease , Aged , Humans , Parkinson Disease/therapy , Parkinson Disease/drug therapy , Stem Cell Transplantation/methods , Dopaminergic Neurons/metabolism , Corpus Striatum/metabolism
4.
Sci Adv ; 7(6)2021 02.
Article in English | MEDLINE | ID: mdl-33536212

ABSTRACT

Blood vessels provide supportive microenvironments for maintaining tissue functions. Age-associated vascular changes and their relation to tissue aging and pathology are poorly understood. Here, we perform 3D imaging of young and aging vascular beds. Multiple organs in mice and humans demonstrate an age-dependent decline in vessel density and pericyte numbers, while highly remodeling tissues such as skin preserve the vasculature. Vascular attrition precedes the appearance of cellular hallmarks of aging such as senescence. Endothelial VEGFR2 loss-of-function mice demonstrate that vascular perturbations are sufficient to stimulate cellular changes coupled with aging. Age-associated tissue-specific molecular changes in the endothelium drive vascular loss and dictate pericyte to fibroblast differentiation. Lineage tracing of perivascular cells with inducible PDGFRß and NG2 Cre mouse lines demonstrated that increased pericyte to fibroblast differentiation distinguishes injury-induced organ fibrosis and zymosan-induced arthritis. To spur further discoveries, we provide a freely available resource with 3D vascular and tissue maps.

5.
Elife ; 92020 03 17.
Article in English | MEDLINE | ID: mdl-32178760

ABSTRACT

Hair follicle (HF) development is orchestrated by coordinated signals from adjacent epithelial and mesenchymal cells. In humans this process only occurs during embryogenesis and viable strategies to induce new HFs in adult skin are lacking. Here, we reveal that activation of Hedgehog (Hh) signaling in adjacent epithelial and stromal cells induces new HFs in adult, unwounded dorsal mouse skin. Formation of de novo HFs recapitulated embryonic HF development, and mature follicles produced hair co-occurring with epithelial tumors. In contrast, Hh-pathway activation in epithelial or stromal cells alone resulted in tumor formation or stromal cell condensation respectively, without induction of new HFs. Provocatively, adjacent epithelial-stromal Hh-pathway activation induced de novo HFs also in hairless paw skin, divorced from confounding effects of pre-existing niche signals in haired skin. Altogether, cell-type-specific modulation of a single pathway is sufficient to reactivate embryonic programs in adult tissues, thereby inducing complex epithelial structures even without wounding.


We are born with all the hair follicles that we will ever have in our life. These structures are maintained by different types of cells (such as keratinocytes and fibroblasts) that work together to create hair. Follicles form in the embryo thanks to complex molecular signals, which include a molecular cascade known as the Hedgehog signaling pathway. After birth however, these molecular signals are shut down to avoid conflicting messages ­ inappropriate activation of Hedgehog signaling in adult skin, for instance, leads to tumors. This means that our skin loses the ability to make new hair follicles, and if skin is severely damaged it cannot regrow hair or produce the associated sebaceous glands that keep skin moisturized. Being able to create new hair follicles in adult skin would be both functionally and aesthetically beneficial for patients in need, for example, burn victims. Overall, it would also help to understand if and how it is possible to reactivate developmental programs after birth. To investigate this question, Sun, Are et al. triggered Hedgehog signaling in the skin cells of genetically modified mice; this was done either in keratinocytes, in fibroblasts, or in both types of cells. The experiments showed that Hedgehog signaling could produce new hair follicles, but only when activated in keratinocytes and fibroblasts together. The process took several weeks, mirrored normal hair follicle development and resulted in new hair shafts. The follicles grew on both the back of mice, where hair normally occurs, and even in paw areas that are usually hairless. Not unexpectedly the new hair follicles were accompanied with skin tumors. But, promisingly, treatment with Hedgehog-pathway inhibitor Vismodegib restricted tumor growth while keeping the new follicles intact. This suggests that future work on improving "when and where" Hedgehog signaling is activated may allow the formation of new follicles in adult skin with fewer adverse effects.


Subject(s)
Hair Follicle/metabolism , Hedgehog Proteins/metabolism , Signal Transduction , Skin/metabolism , Adult , Age Factors , Anilides/pharmacology , Animals , Fluorescent Antibody Technique , Gene Expression , Hair Follicle/drug effects , Hair Follicle/embryology , Humans , Immunohistochemistry , Mice , Organogenesis/genetics , Pyridines/pharmacology , Signal Transduction/drug effects , Stromal Cells/drug effects , Stromal Cells/metabolism , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism
6.
Cell Stem Cell ; 26(3): 441-457.e7, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32109378

ABSTRACT

Skin homeostasis is orchestrated by dozens of cell types that together direct stem cell renewal, lineage commitment, and differentiation. Here, we use single-cell RNA sequencing and single-molecule RNA FISH to provide a systematic molecular atlas of full-thickness skin, determining gene expression profiles and spatial locations that define 56 cell types and states during hair growth and rest. These findings reveal how the outer root sheath (ORS) and inner hair follicle layers coordinate hair production. We found that the ORS is composed of two intermingling but transcriptionally distinct cell types with differing capacities for interactions with stromal cell types. Inner layer cells branch from transcriptionally uncommitted progenitors, and each lineage differentiation passes through an intermediate state. We also provide an online tool to explore this comprehensive skin cell atlas, including epithelial and stromal cells such as fibroblasts, vascular, and immune cells, to spur further discoveries in skin biology.


Subject(s)
Hair Follicle , Hair , Animals , Cell Differentiation , Mice , Skin
7.
Open Biol ; 9(10): 190144, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31575330

ABSTRACT

Skeletal vasculature plays a central role in the maintenance of microenvironments for osteogenesis and haematopoiesis. In addition to supplying oxygen and nutrients, vasculature provides a number of inductive factors termed as angiocrine signals. Blood vessels drive recruitment of osteoblast precursors and bone formation during development. Angiogenesis is indispensable for bone repair and regeneration. Dysregulation of the angiocrine crosstalk is a hallmark of ageing and pathobiological conditions in the skeletal system. The skeletal vascular bed is complex, heterogeneous and characterized by distinct capillary subtypes (type H and type L), which exhibit differential expression of angiocrine factors. Furthermore, distinct blood vessel subtypes with differential angiocrine profiles differentially regulate osteogenesis and haematopoiesis, and drive disease states in the skeletal system. This review provides an overview of the role of angiocrine signals in bone during homeostasis and disease.


Subject(s)
Autocrine Communication , Bone Development , Bone Diseases/metabolism , Neovascularization, Physiologic , Animals , Homeostasis , Humans
8.
J Tissue Eng Regen Med ; 10(10): E546-E558, 2016 10.
Article in English | MEDLINE | ID: mdl-24616295

ABSTRACT

Commercially available skin substitutes lack essential non-immune cells for adequate tissue regeneration of non-healing wounds. A tissue-engineered, patient-specific, dermal substitute could be an attractive option for regenerating chronic wounds, for which adipose-derived mesenchymal stem cells (ADMSCs) could become an autologous source. However, ADMSCs are multipotent in nature and may differentiate into adipocytes, osteocytes and chondrocytes in vitro, and may develop into undesirable tissues upon transplantation. Therefore, ADMSCs committed to the fibroblast lineage could be a better option for in vitro or in vivo skin tissue engineering. The objective of this study was to standardize in vitro culture conditions for ADMSCs differentiation into dermal-like fibroblasts which can synthesize extracellular matrix (ECM) proteins. Biomimetic matrix composite, deposited on tissue culture polystyrene (TCPS), and differentiation medium (DM), supplemented with fibroblast-conditioned medium and growth factors, were used as a fibroblast-specific niche (FSN) for cell culture. For controls, ADMSCs were cultured on bare TCPS with either DM or basal medium (BM). Culture of ADMSCs on FSN upregulated the expression of differentiation markers such as fibroblast-specific protein-1 (FSP-1) and a panel of ECM molecules specific to the dermis, such as fibrillin-1, collagen I, collagen IV and elastin. Immunostaining showed the deposition of dermal-specific ECM, which was significantly higher in FSN compared to control. Fibroblasts derived from ADMSCs can synthesize elastin, which is an added advantage for successful skin tissue engineering as compared to fibroblasts from skin biopsy. To obtain rapid differentiation of ADMSCs to dermal-like fibroblasts for regenerative medicine, a matrix-directed differentiation strategy may be employed. Copyright © 2014 John Wiley & Sons, Ltd.


Subject(s)
Adipose Tissue/metabolism , Cell Differentiation , Dermis/metabolism , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Adult , Dermis/cytology , Female , Fibroblasts/cytology , Humans , Male , Mesenchymal Stem Cells/cytology , Middle Aged
9.
Stem Cell Reports ; 5(5): 843-855, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26607954

ABSTRACT

The dynamics and interactions between stem cell pools in the hair follicle (HF), sebaceous gland (SG), and interfollicular epidermis (IFE) of murine skin are still poorly understood. In this study, we used multicolor lineage tracing to mark Lgr6⁺ -expressing basal cells in the HF isthmus, SG, and IFE.We show that these Lgr6⁺ cells constitute long-term self-renewing populations within each compartment in adult skin. Quantitative analysis of clonal dynamics revealed that the Lgr6⁺ progenitor cells compete neutrally in the IFE, isthmus, and SG, indicating population asymmetry as the underlying mode of tissue renewal. Transcriptional profiling of Lgr6⁺ and Lgr6⁺ cells did not reveal a distinct Lgr6⁺ -associated gene expression signature, raising the question of whether Lgr6⁺ expression requires extrinsic niche signals. Our results elucidate the interrelation and behavior of Lgr6⁺ populations in the IFE, HF, and SG and suggest population asymmetry as a common mechanism for homeostasis in several epithelial skin compartments.


Subject(s)
Adult Stem Cells/cytology , Cell Self Renewal , Hair Follicle/cytology , Sebaceous Glands/cytology , Adult Stem Cells/metabolism , Animals , Cells, Cultured , Keratinocytes/cytology , Keratinocytes/metabolism , Mice , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Stem Cell Niche , Transcriptome
10.
Biores Open Access ; 3(6): 339-47, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25469318

ABSTRACT

Epithelialization of chronic cutaneous wound is troublesome and may require use of skin/cell substitutes. Adipose-derived mesenchymal stem cells (ADMSCs) have immense potential as autologous cell source for treating wounds; they can cross the germ layer boundary of differentiation and regenerate skin. When multipotent adult stem cells are considered for skin regeneration, lineage committed keratinocytes may be beneficial to prevent undesirable post-transplantation outcome. This study hypothesized that ADMSCs may be directed to epidermal lineage in vitro on a specifically designed biomimetic and biodegradable niche. Cells were seeded on the test niche constituted with fibrin, fibronectin, gelatin, hyaluronic acid, laminin V, platelet growth factor, and epidermal growth factor in the presence of cell-specific differentiation medium (DM). The ADMSCs grown on bare tissue culture polystyrene surface in DM is designated DM-control and those grown in basal medium (BM) is the BM-control. Lineage commitment was monitored with keratinocyte-specific markers such as cytokeratin 14, cytokeratin 5, cytokeratin 19, and integrin α6 at the transcriptional/translational level. The in vitro designed biomimetic fibrin composite matrix may have potential application as cell transplantation vehicle.

SELECTION OF CITATIONS
SEARCH DETAIL
...