Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-487186

ABSTRACT

The Omicron (BA.1/B.1.1.529) variant of SARS-CoV-2 harbors an alarming 37 mutations on its spike protein, reducing the efficacy of current COVID-19 vaccines. This study identified CD8+ and CD4+ T cell epitopes from SARS-CoV-2 S protein mutants. To identify the highest quality CD8 and CD4 epitopes from the Omicron variant, we selected epitopes with a high binding affinity towards both MHC I and MHC II molecules and applied other clinical checkpoint predictors including immunogenicity, antigenicity, allergenicity, instability, and toxicity. Subsequently, we found eight Omicron (BA.1/B.1.1.529) specific CD8+ and eleven CD4+ T cell epitopes with a world population coverage of 76.16% and 97.46%, respectively. Additionally, we identified common epitopes across Omicron BA.1 and BA.2 lineages that target mutations critical to SARS-CoV-2 virulence. Further, we identified common epitopes across B.1.1.529 and other circulating SARS-CoV-2 variants, such as B.1.617.2 (Delta). We predicted CD8 epitopes binding affinity to murine MHC alleles to test the vaccine candidates in preclinical models. The CD8 epitopes were further validated using our previously developed software tool PCOptim. We then modeled the three-dimensional structures of our top CD8 epitopes to investigate the binding interaction between peptide-MHC and peptide-MHC-TCR complexes. Importantly, our identified epitopes are targeting the mutations on the RNA-binding domain and the fusion sites of S protein. This could potentially eliminate viral infections and form long-term immune responses compared to rather short-lived mRNA vaccines and maximize the efficacy of vaccine candidates against the current pandemic and potential future variants.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-461301

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has challenged public health at an unprecedented scale which has led to a dramatic loss of human life worldwide. To design a protective vaccine against SARS-CoV-2, it is necessary to understand which SARS-CoV-2 specific epitopes can elicit a T cell response and provide protection across a broad population. In this study, PLpro and RdRp, two immunogenic non-structural proteins from an immunodominant gene region ORF1ab, as well as ORF3a and ORF9b are identified as potential vaccine targets against SARS-CoV-2. To select top epitopes for vaccine design, we used various clinical properties, such as antigenicity, allergenicity, toxicity and IFN-y secretion. The analysis of CD8 and CD4 T cell epitopes revealed multiple potential vaccine constructs that cover a high percentage of the world population. We identified 8 immunogenic, antigenic, non-allergenic, non-toxic, stable and IFN-y inducing CD8 proteins for nsp3, 4 for nsp12, 11 for ORF3a and 3 for ORF9b that are common across four lineages of variants of concern - B.1.1.7, P.1, B.1.351 and B.1.617.2, which protect 98.12%, 87.08%, 96.07% and 63.8% of the world population, respectively. We also identified variant specific T cell epitopes that could be useful in targeting each variant strain separately. Including the prediction of mouse MHC affinity towards our top CD8 epitopes, our study revealed a total of 3 immunogenic, antigenic, non-allergenic, non-toxic, stable and IFN-y inducing CD8 epitopes overlapping with 6 antigenic, non-allergenic, non-toxic, stable and IFN-y inducing CD4 epitopes across all four variants of concern which can effectively be utilized in pre-clinical studies. The landscape of SARS-CoV-2 T cell epitopes that we identified can help lead SARS-CoV-2 vaccine development as well as epitope-based peptide vaccine research in the future.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-459907

ABSTRACT

The current COVID-19 pandemic continues to spread and devastate in the absence of effective treatments, warranting global concern and action. Despite progress in vaccine development, the rise of novel, increasingly infectious SARS-CoV-2 variants makes it clear that our response to the virus must continue to evolve along with it. The use of immunoinformatics provides an opportunity to rapidly and efficiently expand the tools at our disposal to combat the current pandemic and prepare for future outbreaks through epitope-based vaccine design. In this study, we validated and compared the currently available epitope prediction tools, and then used the best tools to predict T cell epitopes from SARS-CoV-2 spike and nucleocapsid proteins for use in an epitope-based vaccine. We combined the mouse MHC affinity predictor and clinical predictors such as HLA affinity, immunogenicity, antigenicity, allergenicity, toxicity and stability to select the highest quality CD8 and CD4 T cell epitopes for the common SARS-CoV-2 variants of concern suitable for further preclinical studies. We also identified variant-specific epitopes to more precisely target the Alpha, Beta, Gamma, Delta, Cluster 5 and US variants. We then modeled the 3D structures of our top 4 N and S epitopes to investigate the molecular interaction between peptide-MHC and peptide-MHC-TCR complexes. Following in vitro and in vivo validation, the epitopes identified by this study may be used in an epitope-based vaccine to protect across all current variants, as well as in variant-specific booster shots to target variants of concern. Immunoinformatics tools allowed us to efficiently predict epitopes in silico most likely to prove effective in vivo, providing a more streamlined process for vaccine development in the context of a rapidly evolving pandemic.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-431721

ABSTRACT

The spread of SARS-CoV-2 and the increasing mortality rates of COVID-19 create an urgent need for treatments, which are currently lacking. Although vaccines have been approved by the FDA for emergency use in the U.S., patients will continue to require pharmacologic intervention to reduce morbidity and mortality as vaccine availability remains limited. The rise of new variants makes the development of therapeutic strategies even more crucial to combat the current pandemic and future outbreaks. Evidence from several studies suggests the host immune response to SARS-CoV-2 infection plays a critical role in disease pathogenesis. Consequently, host immune factors are becoming more recognized as potential biomarkers and therapeutic targets for COVID-19. To develop therapeutic strategies to combat current and future coronavirus outbreaks, understanding how the coronavirus hijacks the host immune system during and after the infection is crucial. In this study, we investigated immunological patterns or characteristics of the host immune response to SARS-CoV-2 infection that may contribute to the disease severity of COVID-19 patients. We analyzed large bulk RNASeq and single cell RNAseq data from COVID-19 patient samples to immunoprofile differentially expressed gene sets and analyzed pathways to identify human host protein targets. We observed an immunological profile of severe COVID-19 patients characterized by upregulated cytokines, interferon-induced proteins, and pronounced T cell lymphopenia, supporting findings by previous studies. We identified a number of host immune targets including PERK, PKR, TNF, NF-kB, and other key genes that modulate the significant pathways and genes identified in COVID-19 patients. Finally, we identified genes modulated by COVID-19 infection that are implicated in oncogenesis, including E2F transcription factors and RB1, suggesting a mechanism by which SARS-CoV-2 infection may contribute to oncogenesis. Further clinical investigation of these targets may lead to bonafide therapeutic strategies to treat the current COVID-19 pandemic and protect against future outbreaks and viral escape variants.

5.
Article in English | WPRIM (Western Pacific) | ID: wpr-76615

ABSTRACT

Resveratrol has been reported to possess cancer preventive properties. In this study, we analyzed anti-tumor activity of a newly synthesized resveratrol analog, cis-3,4',5-trimethoxy-3'-hydroxystilbene (hereafter called 11b) towards breast and pancreatic cancer cell lines. 11b treatments reduced the proliferation of human pancreatic and breast cancer cells, arrested cells in the G2/M phase, and increased the percentage of cells in the subG1/G0 fraction. The 11b treatments also increased the total levels of mitotic checkpoint proteins such as BubR1, Aurora B, Cyclin B, and phosphorylated histone H3. Mechanistically, 11b blocks microtubule polymerization in vitro and it disturbed microtubule networks in both pancreatic and breast cancer cell lines. Computational modeling of the 11b-tubulin interaction indicates that the dimethoxyphenyl group of 11b can bind to the colchicine binding site of tubulin. Our studies show that the 11b treatment effects occur at lower concentrations than similar effects associated with resveratrol treatments and that microtubules may be the primary target for the observed effects of 11b. These studies suggest that 11b should be further examined as a potentially potent clinical chemotherapeutic agent for treating pancreatic and breast cancer patients.


Subject(s)
Humans , Antineoplastic Agents/pharmacology , Binding Sites , Breast Neoplasms , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colchicine/chemistry , Cyclin B/metabolism , G2 Phase/drug effects , Microtubules/drug effects , Models, Molecular , Pancreatic Neoplasms , Protein Serine-Threonine Kinases/metabolism , Stilbenes/pharmacology , Tubulin/metabolism
6.
J Comput Aided Mol Des ; 19(4): 213-28, 2005 Apr.
Article in English | MEDLINE | ID: mdl-16163449

ABSTRACT

In-silico screening of flexible ligands against flexible ligand binding pockets (LBP) is an emerging approach in structure-based drug discovery. Here, we describe a molecular dynamics (MD) based docking approach to investigate the influence on the high-throughput in-silico screening of small molecules against flexible ligand binding pockets. In our approach, an ensemble of 51 energetically favorable structures of the LBP of human estrogen receptor alpha (hERalpha) were collected from 3 ns MD simulations. In-silico screening of 3500 endocrine disrupting compounds against these flexible ligand binding pockets resulted in thousands of ER-ligand complexes of which 582 compounds were unique. Detailed analysis of MD generated structures showed that only 17 of the LBP residues significantly contribute to the overall binding pocket flexibility. Using the flexible LBP conformations generated, we have identified 32 compounds that bind better to the flexible ligand-binding pockets compared to the crystal structure. These compounds, though chemically divergent, are structurally similar to the natural hormone. Our MD-based approach in conjunction with grid-based distributed computing could be applied routinely for in-silico screening of large databases against any given target.


Subject(s)
Endocrine Disruptors/metabolism , Receptors, Estrogen/metabolism , Amino Acid Sequence , Endocrine Disruptors/chemistry , Ligands , Models, Molecular , Molecular Sequence Data , Receptors, Estrogen/chemistry
7.
Bioorg Med Chem Lett ; 15(18): 4125-9, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-15993586

ABSTRACT

Vascular endothelial growth factor (VEGF) is a key stimulant of angiogenesis, which is the process of generating new capillary blood vessels. Inhibition of the vascular endothelial growth factor receptor (VEGFR) kinase is known to result in blockage of angiogenesis. A pharmacophore was developed based on the binding of ATP to the hinge region of the kinase domain of VEGFR and a database search of 18,000 compounds was conducted. Selected hits were assessed for their ability to limit the induction of web-like network of capillary tubes by the human umbilical vascular endothelial cells. Two compounds (1 and 4) showed good inhibitory ability to prevent sprouting and closed polygon formation of the tubular networks, promising them to be lead compounds. Compound 4 showed 60% inhibition at 0.05 microM.


Subject(s)
Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Drug Evaluation, Preclinical , Neovascularization, Physiologic/drug effects , Cells, Cultured , Endothelial Cells/cytology , Endothelial Cells/drug effects , Humans , Models, Molecular , Protein Structure, Tertiary , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/chemistry , Receptors, Vascular Endothelial Growth Factor/metabolism , Structure-Activity Relationship , Umbilical Cord/cytology
8.
J Mol Biol ; 342(3): 1053-66, 2004 Sep 17.
Article in English | MEDLINE | ID: mdl-15342256

ABSTRACT

Despite sharing many common features, adenine-binding and guanine-binding sites in proteins often show a clear preference for the cognate over the non-cognate ligand. We have analyzed electrostatic potential (ESP) patterns at adenine and guanine-binding sites of a large number of non-redundant proteins where each binding site was first annotated as adenine/guanine-specific or non-specific from a survey of primary literature. We show that more than 90% of ESP variance at the binding sites is accounted for by only two principal component ESP vectors, each aligned to molecular dipoles of adenine and guanine. Projected on these principal component vectors, the adenine/guanine-specific and non-specific binding sites, including adenine-containing dinucleotides, show non-overlapping distributions. Adenine or guanine specificities of the binding sites also show high correlation with the corresponding electrostatic replacement (cognate by non-cognate ligand) energies. High correlation coefficients (0.94 for 35 adenine-binding sites and 1.0 for 20 guanine-binding sites) were obtained when adenine/guanine specificities were predicted using the replacement energies. Our results demonstrate that ligand-free protein ESP is an excellent indicator for discrimination between adenine and guanine-specific binding sites and that ESP of ligand-free protein can be used as a tool to annotate known and putative purine-binding sites in proteins as adenine or guanine-specific.


Subject(s)
Adenine/metabolism , Guanine/metabolism , Proteins/chemistry , Proteins/metabolism , Adenine/chemistry , Binding Sites , Databases, Protein , Guanine/chemistry , Hydrogen Bonding , In Vitro Techniques , Molecular Structure , Principal Component Analysis , Protein Binding , Static Electricity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...