Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Public Health ; 17(3): 450-456, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262082

ABSTRACT

BACKGROUND: In recent years, new drugs for the treatment of various diseases, thereby the emergence of antimicrobial resistance tremendously increased because of the increased consumption rate of various drugs. However, the irrational use of antibiotics increases the microbial resistance along with that the frequency of mortality associated with infections is higher. Broad-spectrum antibiotics were effectively against various bacteria and the unrestricted application of antibiotics lead to the emergence of drug resistance. The present study was aimed to detect the antibacterial properties of lipopeptide novel drug producing Streptomyces parvulus. METHODS: A lipopeptide-producing S. parvulus was isolated from the soil sample. The inhibitory effect of lipopeptide was detected against Gram-positive and Gram-negative bacteria. Bactericidal activity and minimum inhibitory concentration (MIC) were assayed. The IC50 value was analysed against ovarian and human melanoma cell lines. The experimental mouse model was infected withKlebsiella pneumoniae and treated with lipopeptide and bactericidal activity was determined. RESULTS: The results indicated that the antibacterial activity of lipopeptide ranges from 13 ± 1 mm to 32 ± 2 mm against Gram-positive and Gram-negative strains. The lowest MIC value was noted as 1.5 ± 0.1 µg/mL against K. pneumoniae and the highest against E. aerogenes (7.5 ± 0.2 µg/mL). The IC50 value was considerably high for the ovarian cell lines and human melanoma cell lines (426 µg/mL and 503 µg/mL). At 25 µg/mL concentration of lipopeptide, only 16.4% inhibition was observed in the ovarian cell line whereas 20.2% inhibition was achieved at this concentration in the human melanoma cell line. Lipopeptide inhibited bacterial growth and was completely inhibited at a concentration of 20 µg/mL. Lipopeptide reduced bacterial load in experimental mice compared to control (p < 0.05). CONCLUSION: Lipopeptide activity and its non-toxic nature reveal that it may serve as a lead molecule in the development of a novel drug.


Subject(s)
Bacterial Infections , Melanoma , Streptomyces , Humans , Animals , Mice , Anti-Bacterial Agents/chemistry , Lipopeptides/pharmacology , Gram-Positive Bacteria , Gram-Negative Bacteria , Biofilms , Microbial Sensitivity Tests
2.
Foods ; 12(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38231774

ABSTRACT

Lactic acid bacteria (LAB) are excellent anaerobic fermenters that produce highly valuable grass-based animal feed containing essential nutrients. In the present study, an ensiling process was used to improve anaerobic fermentation in triticale silage under different moisture conditions with LAB. The triticale was treated with either a single bacterium or combined LAB and then vacuum-sealed. After 180 and 360 days of storage, the silage's fermentation characteristics, microbial changes and nutrient contents were analyzed. The pH of the silage was significantly lower than the control silage. There was a significant difference in the pH values between the silages treated with single or mixed LAB. The LAB treatment led to a substantial increase in lactic acid (LA), a decrease in butyric acid (BA), and marginal levels of acetic acid (AA). The LA content after the mixed LAB treatment was significantly higher than that after the single culture LAB treatment. After single or combined inoculant treatments, the LAB population in the silage increased, while the yeast and mold levels decreased. These findings suggest that the addition of LAB to silage during ensiling could enhance the nutritional quality and reduce unwanted microbial growth. The mixed LAB treatments produced silage with a significantly higher nutritional value than the single LAB treatments.

3.
FASEB J ; 34(9): 12289-12307, 2020 09.
Article in English | MEDLINE | ID: mdl-32701200

ABSTRACT

Given the rising evidence that gut malfunction including changes in the gut microbiota composition, plays a major role in the development of obesity and associated metabolic diseases, the exploring of novel probiotic bacteria with potential health benefits has attracted great attention. Recently Lactobacillus spp., exert potent anti-obesity effects by regulating key transcriptional and translational factors in adipose tissues. However, the molecular mechanism behind the anti-obesity effect of probiotics is not yet fully understood. Therefore, we investigated the effect of Lactobacillus plantarum A29 on the expression of adipogenic and lipogenic genes in 3T3-L1 adipocytes and high-fat diet (HFD)-fed mice. We observed that the treatment of 3T3-L1 adipocytes with the cell-free metabolites of L plantarum inhibited their differentiation and fat depositions via downregulating the key adipogenic transcriptional factors (PPAR-γ, C/EBP-α, and C/EBP-ß) and their downstream targets (FAS, aP2, ACC, and SREBP-1). Interestingly, supplementation with L plantarum reduced the fat mass and serum lipid profile concurrently with downregulation of lipogenic gene expression in the adipocytes, resulting in reductions in the bodyweight of HFD-fed obese mice. L plantarum treatment attenuated the development of obesity in HFD-fed mice via the activation of p38MAPK, p44/42, and AMPK-α by increasing their phosphorylation. Further analysis revealed that A29 modulated gut-associated microbiota composition. Thus, A 29 potential probiotic strain may alleviate the obesity development and its associated metabolic disorders via inhibiting PPARγ through activating the p38MAPK and p44/42 signaling pathways.


Subject(s)
Dysbiosis/therapy , Gastrointestinal Microbiome , Lactobacillus plantarum/physiology , Obesity/therapy , Probiotics/pharmacology , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Cell Differentiation , Diet, High-Fat , Extracellular Signal-Regulated MAP Kinases/physiology , MAP Kinase Signaling System/physiology , Male , Mice , Mice, Inbred ICR , Obesity/metabolism , Obesity/microbiology , PPAR gamma/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/physiology
4.
Phytomedicine ; 45: 41-48, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29573911

ABSTRACT

BACKGROUND: Limonene is a cyclic monoterpene (CTL) found in citrus fruits and many plant kingdoms. It has attracted attention as potential molecule due to its diverse biological activities. However, molecular mechanism involved in the osteogenic induction of CTL in C2C12 skeletal muscle cells remain unclear. PURPOSE: Skeletal development maintains the bone homeostasis through bone remodeling process. It coordinated between the osteoblast and osteoblast process. Osteoporosis is one of the most common bone diseases caused by a systemic reduction in bone mass. Recent osteoporosis treatment is based on the use of anti-resorptive and bone forming drugs. However, long term use of these drugs is associated with serious side effects and strategies on the discovery of lead compounds from natural products for osteoblast differentiation are urgently needed. Therefore, we planned to find out the role of CTL on osteoblast differentiation and glucose uptake in C2C12 cells and its effect on signaling pathways. METHODS: Cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition, genes, and proteins associated with osteoblast activation and glucose utilization were analysed. RESULTS: CTL did not affect the cell viability. CTL significantly increased ALP activity, calcium depositions and the expression of osteogenic specific genes such as Myogenin, Myogenic differentiation 1 (MyoD), ALP, Run-related transcription factor 2(RUNX2), osteocalcin (OCN). In addition, CTL induced the mRNA expression of bone morphogenetic proteins (BMP-2 BMP-4 BMP-6 BMP-7 BMP-9). CTL treatment enhanced 2-Deoxy-d-glucose (2DG) uptake. Moreover, CTL stimulated the activation of p38 mitogen activated protein kinase (p38MAPK), Protein kinase B (Akt), Extracellular signal related kinase (ERKs) by increasing phosphorylation. CTL treatment abolished p38 inhibitor (SB203580) mediated inhibition of osteoblast differentiation, but no effect was noted by ERKs specific inhibitor (PD98059). CONCLUSION: These results suggest that limonene induces osteoblast differentiation and glucose uptake through activating p38MAPK and Akt signaling pathways, confirming the molecular basis of the osteoblast differentiation by limonene in C2C12 skeletal muscle cells.


Subject(s)
Cyclohexenes/pharmacology , Osteoblasts/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Terpenes/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line , Cell Proliferation/drug effects , Deoxyglucose/metabolism , Deoxyglucose/pharmacokinetics , Gene Expression Regulation/genetics , Imidazoles/pharmacology , Limonene , Mice , Muscle, Skeletal/cytology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Osteoblasts/metabolism , Osteocalcin/genetics , Osteocalcin/metabolism , Osteogenesis/drug effects , Phosphorylation/drug effects , Pyridines/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
5.
Molecules ; 21(5)2016 May 14.
Article in English | MEDLINE | ID: mdl-27187346

ABSTRACT

The present study was designed to evaluate the antitumor effects of the synthetic Mannich base 1,3-bis-((3-hydroxynaphthalen-2-yl)phenylmethyl)urea (1,3-BPMU) against HEP-G2 hepatoma cells and diethylnitrosamine (DEN)-induced hepatocarcinoma (HCC) in albino rats. In vitro analysis results revealed that 1,3-BPMU showed significant cytotoxicity and cell growth inhibition in HEP-G2 hepatoma cells in a concentration-dependent manner. Furthermore, flow cytometry results indicated that 1,3-BPMU enhanced early and late apoptosis. The maximum apoptosis was exhibited at a concentration of 100 µg/mL of 1,3-BPMU. In in vivo analysis, DEN treatment increased the content of nucleic acids, LPO and the activities of AST, ALT, ALP, LDH, γGT and 5'NT with decreased antioxidant activity as compared to control rats. However, 1,3-BPMU treatment to DEN-induced rats decreased the content of nucleic acids, LPO and the activities of AST, ALT, ALP, LDH, γGT and 5'NT and increased the activities of SOD, CAT, GPx, GST and GR (p < 0.05). Furthermore, 1,3-BPMU enhanced the apoptosis via upregulation of caspase-3 and caspase-9 and the downregulation of Bcl-2 and Bcl-XL mRNA expression as compared to DEN-induced rats. Histological and ultrastructural investigation showed that 1,3-BPMU treatment renovated the internal architecture of the liver in DEN-induced rats. In this study, the molecular and pre-clinical results obtained by treatment of DEN-induced rats with 1,3-BPMU suggested that 1,3-BPMU might be considered as an antitumor compound in the future.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Mannich Bases/pharmacology , Hep G2 Cells , Humans
6.
Indian J Clin Biochem ; 31(2): 194-202, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27069327

ABSTRACT

Hepato cellular carcinoma (HCC) is a type of malignant tumor. To investigate the proteins in cancer molecular mechanism and its role in HCC, we have used proteomic tools such as 2DE and MALDI-TOF-MS. Our investigation ravels that, plasma α-fetoprotein and carcinoembryonic antigen levels were elevated in DEN induced rats and gradually decreased after the treatment with 1,3BPMU. 2DE and MALDI-TOF-MS tool offers to identify the up and down regulation of proteins in HCC. Proteomic study reveals that, five differentially expressed proteins were identified in DEN induced rats and 1,3BPMU treated rats i.e. three up regulated protein such as T kininogen, NDPKB, PRMT1 (DEN induced rats), RGS19 and PAF (1,3BPMU treated rats) in 3BPMU treated rats, activation of transcription of a single gene from multiple promoters provides flexibility in the controlled gene expression. The regulations of hepatocyte stimulating factor were slow down the proliferation of hepatic cell and uncontrolled hepatic cell growth and also molecular signals strongly argue for a patho-physiological role in liver metastasis to control the cell aggression. This indicates that, anti cancer property of 1,3BPMU can be used as potent anti cancer agent. The present study also shows the proteomic approach helps to elucidate the tumor maker as well as regulatory marker proteins in HCC.

7.
Molecules ; 20(8): 15359-73, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26305241

ABSTRACT

Synthetic drugs are commonly used to cure various human ailments at present. However, the uses of synthetic drugs are strictly regulated because of their adverse effects. Thus, naturally occurring molecules may be more suitable for curing disease without unfavorable effects. Therefore, we investigated phenyllactic acid (PLA) from Lactobacillus plantarum with respect to its effects on adipogenic genes and their protein expression in 3T3-L1 pre-adipocytes by qPCR and western blot techniques. PLA enhanced differentiation and lipid accumulation in 3T3-L1 cells at the concentrations of 25, 50, and 100 µM. Maximum differentiation and lipid accumulation were observed at a concentration of 100 µM of PLA, as compared with control adipocytes (p < 0.05). The mRNA and protein expression of PPAR-γ2, C/EBP­α, adiponectin, fatty acid synthase (FAS), and SREBP-1 were increased by PLA treatment as compared with control adipocytes (p < 0.05). PLA stimulates PPAR-γ mRNA expression in a concentration dependent manner, but this expression was lesser than agonist (2.83 ± 0.014 fold) of PPAR-γ2. Moreover, PLA supplementation enhances glucose uptake in 3T3-L1 pre-adipocytes (11.81 ± 0.17 mM) compared to control adipocytes, but this glucose uptake was lesser than that induced by troglitazone (13.75 ± 0.95 mM) and insulin treatment (15.49 ± 0.20 mM). Hence, we conclude that PLA treatment enhances adipocyte differentiation and glucose uptake via activation of PPAR-γ2, and PLA may thus be the potential candidate for preventing Type 2 Diabetes Mellitus (T2DM).


Subject(s)
Adipocytes/metabolism , Adipogenesis/drug effects , Lactates/pharmacology , Lactic Acid/pharmacology , Lactobacillus plantarum/chemistry , PPAR gamma/genetics , Up-Regulation/drug effects , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/drug effects , Adipogenesis/genetics , Adiponectin/genetics , Adiponectin/metabolism , Animals , Blotting, Western , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Chromans/pharmacology , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Glucose/metabolism , Glycerol/metabolism , Immunoblotting , Lipid Metabolism/drug effects , Mice , PPAR gamma/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Thiazolidinediones/pharmacology , Troglitazone
SELECTION OF CITATIONS
SEARCH DETAIL
...