Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Tradit Complement Med ; 9(1): 5-14, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30671361

ABSTRACT

Virgin coconut oil (VCO) has been traditionally used as moisturizer since centuries by people in the tropical region. Clinical studies have revealed that VCO improves the symptoms of skin disorders by moisturizing and soothing the skin. However, the mechanistic action of VCO and its benefits on skin has not been elucidated in vitro. The cytotoxicity (CTC50) of VCO was 706.53 ± 2.1 and 787.15 ± 1.1 µg/mL in THP-1 (Human monocytes) and HaCaT (Human keratinocytes) cells respectively. VCO inhibited TNF-α (62.34 ± 3.2 %), IFN-γ (42.66 ± 2.9 %), IL-6 (52.07 ± 2.0 %), IL-8 (53.98 ± 1.8 %) and IL-5 (51.57 ± 2.6 %) respectively in THP-1 cells. Involucrin (INV) and filaggrin (FLG) content increased by 47.53 ± 2.1 % and 40.45 ± 1.2 % respectively in HaCaT cells. VCO increased the expression of Aquaporin-3 (AQP3), involucrin (INV) and filaggrin (FLG) and showed moderate UV protection in HaCaT cells. In vitro skin irritation studies in Reconstructed human epidermis (RHE) and NIH3T3 cells showed that VCO is a non skin irritant (IC50 > 1000 µg/mL) and non phototoxic (PIF < 2). Our study demonstrated the anti inflammatory activity of VCO by suppressing inflammatory markers and protecting the skin by enhancing skin barrier function. This is the first report on anti-inflammatory and skin protective benefits of VCO in vitro. Overall, the results warrant the use of VCO in skin care formulations.

2.
Eur J Pharmacol ; 813: 33-41, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28736282

ABSTRACT

Psoriasis is considered to be a systemic disease of immune dysfunction. It is still unclear what triggers the inflammatory cascade associated with psoriasis but recent evidences suggest the vital role of IL-23/IL-17A cytokine axis in etiology of psoriasis. Several studies have been conducted in psoriatic-like animal models but ethical issues and complexity surrounding it halts the screening of new anti-psoriatic drug candidates. Hence, in this study, we developed a new in-vitro model for psoriasis using imiquimod (IMQ) induced differentiated HaCaT cells which could be used for screening of new anti-psoriatic drug candidates. The differentiated HaCaT cells were treated with IMQ (100µM) to induce psoriatic like inflammation and its effect was investigated using a natural anti-psoriatic compound, curcumin. The proliferation of psoriatic-like cells was inhibited by curcumin at 25 and 50µM concentrations. The psoriatic-like cells decreased in number with increase in apoptotic and dead cells upon curcumin treatment. Curcumin inhibited the proliferation of IMQ-induced differentiated HaCaT cells (Psoriatic-like cells) by down-regulation of pro-inflammatory cytokines, interleukin-17, tumor necrosis factor-α, interferon-γ, and interleukin-6. Apart from this, curcumin significantly enhanced the skin-barrier function by up-regulation of involucrin (iNV) and filaggrin (FLG), the regulators of epidermal skin barrier. The IMQ-induced differentiated HaCaT in vitro model recapitulated some aspects of the psoriasis pathogenesis similar to murine model. Henceforth, we conclude that this model may be used for rapid screening of anti-psoriatic drug candidates and warrant further mechanistic studies.


Subject(s)
Aminoquinolines/adverse effects , Cell Differentiation/drug effects , Curcumin/pharmacology , Keratinocytes/drug effects , Keratinocytes/pathology , Psoriasis/chemically induced , Psoriasis/pathology , Biomarkers/metabolism , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Curcumin/metabolism , Cytokines/chemistry , Cytokines/metabolism , Drug Evaluation, Preclinical , Filaggrin Proteins , Humans , Imiquimod , Molecular Docking Simulation , Protein Conformation , Skin/drug effects
3.
PLoS One ; 11(1): e0145921, 2016.
Article in English | MEDLINE | ID: mdl-26731545

ABSTRACT

Human skin is body's vital organ constantly exposed to abiotic oxidative stress. This can have deleterious effects on skin such as darkening, skin damage, and aging. Plant-derived products having skin-protective effects are well-known traditionally. Triphala, a formulation of three fruit products, is one of the most important rasayana drugs used in Ayurveda. Several skin care products based on Triphala are available that claim its protective effects on facial skin. However, the skin protective effects of Triphala extract (TE) and its mechanistic action on skin cells have not been elucidated in vitro. Gallic acid, ellagic acid, and chebulinic acid were deduced by LC-MS as the major constituents of TE. The identified key compounds were docked with skin-related proteins to predict their binding affinity. The IC50 values for TE on human dermal fibroblasts (HDF) and human keratinocytes (HaCaT) were 204.90 ± 7.6 and 239.13 ± 4.3 µg/mL respectively. The antioxidant capacity of TE was 481.33 ± 1.5 mM Trolox equivalents in HaCaT cells. Triphala extract inhibited hydrogen peroxide (H2O2) induced RBC haemolysis (IC50 64.95 µg/mL), nitric oxide production by 48.62 ± 2.2%, and showed high reducing power activity. TE also rescued HDF from H2O2-induced damage; inhibited H2O2 induced cellular senescence and protected HDF from DNA damage. TE increased collagen-I, involucrin and filaggrin synthesis by 70.72 ± 2.3%, 67.61 ± 2.1% and 51.91 ± 3.5% in HDF or HaCaT cells respectively. TE also exhibited anti-tyrosinase and melanin inhibition properties in a dose-dependent manner. TE increased the mRNA expression of collagen-I, elastin, superoxide dismutase (SOD-2), aquaporin-3 (AQP-3), filaggrin, involucrin, transglutaminase in HDF or HaCaT cells, and decreased the mRNA levels of tyrosinase in B16F10 cells. Thus, Triphala exhibits protective benefits on skin cells in vitro and can be used as a potential ingredient in skin care formulations.


Subject(s)
Antioxidants/pharmacology , Fibroblasts/drug effects , Keratinocytes/drug effects , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Protective Agents/pharmacology , Animals , Antioxidants/chemistry , Cell Line , Cellular Senescence/drug effects , DNA Damage/drug effects , Fibroblasts/metabolism , Filaggrin Proteins , Humans , Hydrogen Peroxide/metabolism , Keratinocytes/metabolism , Mice , Plant Extracts/chemistry , Protective Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...