Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Procedia Comput Sci ; 194: 255-271, 2021.
Article in English | MEDLINE | ID: mdl-34876935

ABSTRACT

Globally, the confirmed coronavirus (SARS-CoV2) cases are being increasing day by day. Coronavirus (COVID-19) causes an acute infection in the respiratory tract that started spreading in late 2019. Huge datasets of SARS-CoV2 patients can be incorporated and analyzed by machine learning strategies for understanding the pattern of pathological spread and helps to analyze the accuracy and speed of novel therapeutic methodologies, also detect the susceptible people depends on their physiological and genetic aspects. To identify the possible cases faster and rapidly, we propose the Artificial Intelligence (AI) power screening solution for SARS- CoV2 infection that can be deployable through the mobile application. It collects the details of the travel history, symptoms, common signs, gender, age and diagnosis of the cough sound. To examine the sharpness of pathomorphological variations in respiratory tracts induced by SARS-CoV2, that compared to other respiratory illnesses to address this issue. To overcome the shortage of SARS-CoV2 datasets, we apply the transfer learning technique. Multipronged mediator for risk-averse Artificial Intelligence Architecture is induced for minimizing the false diagnosis of risk-stemming from the problem of complex dimensionality. This proposed application provides early detection and prior screening for SARS-CoV2 cases. Huge data points can be processed through AI framework that can examine the users and classify them into "Probably COVID", "Probably not COVID" and "Result indeterminate".

2.
Bioresour Technol ; 165: 233-40, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24746339

ABSTRACT

In a hybrid upflow anaerobic sludge blanket (HUASB) reactor, biodegradation in association with biohydrogen production was studied using distillery wastewater as substrate. The experiments were carried out at ambient temperature (34±1°C) and acidophilic pH of 6.5 with constant hydraulic retention time (HRT) of 24h at various organic loading rates (OLRs) (1-10.2kgCODm(-3)d(-1)) in continuous mode. A maximum hydrogen production rate of 1300mLd(-1) was achieved. A back propagation neural network (BPNN) model with network topology of 4-20-1 using Levenberg-Marquardt (LM) algorithm was developed and validated. A total of 231 data points were studied to examine the performance of the HUASB reactor in acclimatisation and operation phase. The statistical qualities of BPNN models were significant due to the high correlation coefficient, R(2), and lower mean absolute error (MAE) between experimental and simulated data. From the results, it was concluded that BPNN modelling could be applied in HUASB reactor for predicting the biodegradation and biohydrogen production using distillery wastewater.


Subject(s)
Bioreactors/microbiology , Distillation , Hydrogen/metabolism , Industrial Waste/analysis , Neural Networks, Computer , Wastewater/chemistry , Water Purification/instrumentation , Acclimatization , Anaerobiosis , Biodegradation, Environmental , Biofuels , Biological Oxygen Demand Analysis , Fatty Acids, Volatile/analysis , Hydrogen-Ion Concentration , Reproducibility of Results , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...