Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 257(Pt 2): 128807, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38101685

ABSTRACT

The balance between pro-death and pro-survival signaling determines the fate of cells under a variety of pathological and physiological conditions. The pro-cell death signaling, apoptosis, and survival singling, autophagy work in an integrated manner for maintaining cell integrity. Their altered balance drives pathological conditions such as cancer, inflammatory disorders, and neurodegenerative diseases. Dissecting complex crosstalk between autophagy and apoptosis requires simultaneous detection of both events at a single cell level with good temporal resolution in real-time. Here, we have used two distinct fluorescent-based probes of caspase activation and autophagy for generating such sensor cells. Cells stably expressing RFP-LC3 as an autophagy marker were further stably expressed with a FRET-based probe for caspase activation with a nuclear localization signal. The functional validation and live-cell imaging of the sensor cells using selected treatments revealed that stress that induces rapid cell death often fails to induce autophagy signaling, and slow cell death induction triggers simultaneous autophagy signaling with caspase activation. The real-time imaging revealed the time-dependent shift of cells towards caspase activation while autophagy is inhibited confirming basal autophagy confers survival against apoptosis under stress conditions. Confocal imaging also revealed that cells under 3D culture condition maintain increased autophagy over monolayer cultures. High-throughput adaptability of the system extends its application for the screening of compounds that cause caspase activation, autophagy, or both demonstrating the potential utility of the sensor probe for diverse biological applications.


Subject(s)
Apoptosis , Caspases , Caspases/metabolism , Apoptosis/genetics , Cell Death , Signal Transduction , Autophagy/genetics , Caspase 3/metabolism , Cell Line, Tumor
2.
Biol Proced Online ; 25(1): 22, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37495994

ABSTRACT

BACKGROUND: The entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the host cell is mediated through the binding of the SARS-CoV-2 Spike protein via the receptor binding domain (RBD) to human angiotensin-converting enzyme 2 (hACE2). Identifying compounds that inhibit Spike-ACE2 binding would be a promising and safe antiviral approach against COVID-19. METHODS: In this study, we used a BSL-2 compatible replication-competent vesicular stomatitis virus (VSV) expressing Spike protein of SARS-CoV-2 with eGFP reporter system (VSV-eGFP-SARS-CoV-2) in a recombinant permissive cell system for high-throughput screening of viral entry blockers. The SARS-CoV-2 permissive reporter system encompasses cells that stably express hACE2-tagged cerulean and H2B tagged with mCherry, as a marker of nuclear condensation, which also enables imaging of fused cells among infected EGFP positive cells and could provide real-time information on syncytia formation. RESULTS: A limited high-throughput screening identified six natural products that markedly inhibited VSV-eGFP-SARS-CoV-2 with minimum toxicity. Further studies of Spike-S1 binding using the permissive cells showed Scillaren A and 17-Aminodemethoxygeldanamycin could inhibit S1 binding to ACE2 among the six leads. A real-time imaging revealed delayed inhibition of syncytia by Scillaren A, Proscillaridin, Acetoxycycloheximide and complete inhibition by Didemnin B indicating that the assay is a reliable platform for any image-based drug screening. CONCLUSION: A BSL-2 compatible assay system that is equivalent to the infectious SARS-CoV-2 is a promising tool for high-throughput screening of large compound libraries for viral entry inhibitors against SARS-CoV-2 along with toxicity and effects on syncytia. Studies using clinical isolates of SARS-CoV-2 are warranted to confirm the antiviral potency of the leads and the utility of the screening system.

3.
Methods Mol Biol ; 2543: 57-69, 2022.
Article in English | MEDLINE | ID: mdl-36087259

ABSTRACT

Apoptosis and necrosis are the two sides of the cell death penumbra. Apoptosis is a well-studied model of cell death wherein the cell destroys itself employing a predefined form of active signaling without the release of soluble cytoplasmic contents to the external environment. Compared to apoptosis, necrosis is a nonspecific form of sudden cell death in response to an invasive external stimulus which in turn is devoid of active programmed intracellular signaling leading to the sudden release of the soluble cellular contents consequent to the rupture of the cell membrane. This fundamental difference between apoptosis and necrosis made us believe that the former is the safe form of cell death and the latter is an undesirable one which often elicits an inflammatory response to the adjacent cells. Recent studies have shown that necrosis also involves a few defined cellular and complex biochemical events similar to apoptosis rendering it difficult to distinguish these two events at the single-cell level using the currently used popular assays.Here we provide a newly described detailed methodology encompassing cell system development along with a multiparametric flow cytometry-based approach to discriminate apoptotic cells from necrotic cells using a stable cell line expressing genetically encoded probe for detecting caspase activation and DsRed targeted at the mitochondria.


Subject(s)
Apoptosis , Mitochondria , Apoptosis/physiology , Cell Death , Flow Cytometry/methods , Humans , Mitochondria/metabolism , Necrosis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...