Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-36183288

ABSTRACT

Understanding regional distribution and specialization of small intestinal epithelial cells is crucial for developing methods to control appetite, stress, and nutrient uptake in swine. To establish a better understanding of specific epithelial cells found across different regions of the small intestine in pigs, we utilized single-cell RNA sequencing (scRNA-seq) to recover and analyze epithelial cells from duodenum, jejunum, and ileum. Cells identified included crypt cells, enterocytes, BEST4 enterocytes, goblet cells, and enteroendocrine (EE) cells. EE cells were divided into two subsets based on the level of expression of the EE lineage commitment gene, NEUROD1. NEUROD1hi EE cells had minimal expression of hormone-encoding genes and were dissimilar to EE cells in humans and mice, indicating a subset of EE cells unique to pigs. Recently discovered BEST4 enterocytes were detected in both crypts and villi throughout the small intestine via in situ staining, unlike in humans, where BEST4 enterocytes are found only in small intestinal villi. Proximal-to-distal gradients of expression were noted for hormone-encoding genes in EE cells and nutrient transport genes in enterocytes via scRNA-seq, demonstrating regional specialization. Regional gene expression in EE cells and enterocytes was validated via quantitative PCR (qPCR) analysis of RNA isolated from epithelial cells of different small intestinal locations. Though many genes had similar patterns of regional expression when assessed by qPCR of total epithelial cells, some regional expression was only detected via scRNA-seq, highlighting advantages of scRNA-seq to deconvolute cell type-specific regional gene expression when compared to analysis of bulk samples. Overall, results provide new information on regional localization and transcriptional profiles of epithelial cells in the pig small intestine.


Cells lining the intestinal tract (i.e., epithelial cells) provide a barrier to the outside environment but also play important specialized roles in nutrient absorption and secretion of mucus or hormones involved in controlling appetite and digestion. While similar cell types can be found throughout the small intestine, they have even more specialized function depending on region of the small intestine. Identification and characterization of intestinal epithelial cells are foundational to promoting pig intestinal health for optimal growth. Our research identified six types of epithelial cells across the small intestine of pigs. Enterocytes, an absorptive cell type, shared commonalities with human enterocytes, but a population of enteroendocrine cells, which secrete hormones, was unique to pigs. The location of certain epithelial cells in the intestine was identified and informed the relationship between various epithelial cell types. Overall, a clearer understanding of specific epithelial cells in the porcine intestine is provided, proving a critical foundation to further research aimed at maximizing pig intestinal health.


Subject(s)
Duodenum , Intestine, Small , Animals , Duodenum/metabolism , Epithelial Cells/metabolism , Hormones , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Jejunum/metabolism , Swine
2.
Front Microbiol ; 14: 1304029, 2023.
Article in English | MEDLINE | ID: mdl-38304860

ABSTRACT

Salmonella is a global bacterial foodborne pathogen associated with a variety of contaminated food products. Poultry products are a common source of Salmonella-associated foodborne illness, and an estimated 7% of human illnesses in the United States are attributed to turkey products. From November 2017 to March 2019, the Centers for Disease Control and Prevention reported a turkey-associated outbreak of multidrug-resistant (MDR; resistant to ≥3 antimicrobial classes) Salmonella enterica serovar Reading (S. Reading) linked to 358 human infections in 42 US states and Canada. Since S. Reading was seldom linked to human illness prior to this outbreak, the current study compared genomic sequences of S. Reading isolates prior to the outbreak (pre-outbreak) to isolates identified during the outbreak period, focusing on genes that were different between the two groups but common within a group. Following whole-genome sequence analysis of five pre-outbreak and five outbreak-associated turkey/turkey product isolates of S. Reading, 37 genes located within two distinct chromosomal regions were identified only in the pre-outbreak isolates: (1) an ~5 kb region containing four protein-coding genes including uidA which encodes beta-glucuronidase, pgdA encoding peptidoglycan deacetylase, and two hypothetical proteins and (2) an ~28 kb region comprised of 32 phage-like genes and the xerC gene, which encodes tyrosine recombinase (frequently associated with phage genes). The five outbreak isolates also had a deletional event within the cirA gene, introducing a translational frame shift and premature stop codon. The cirA gene encodes a protein with dual receptor functions: a siderophore receptor for transport of dihydroxybenzoylserine as well as a colicin Ia/b receptor. Significant differences for the identified genetic variations were also detected in 75 S. Reading human isolates. Of the 41 S. Reading isolates collected before or in 2017, 81 and 90% of the isolates contained the uidA and pgdA genes, respectively, but only 24% of the isolates collected after 2017 harbored the uidA and pgdA genes. The truncation event within the cirA gene was also significantly higher in isolates collected after 2017 (74%) compared to before or in 2017 (5%). Phenotypic analysis of the S. Reading isolates for colicin and cefiderocol sensitivities (CirA) and ß-methyl-D-glucuronic acid utilization (UidA and accessory proteins) supported the genomic data. Overall, a similar genome reduction pattern was generally observed in both the turkey and human isolates of S. Reading during the outbreak period, and the genetic differences were present in genes that could potentially promote pathogen dissemination due to variation in Salmonella colonization, fitness, and/or virulence.

3.
Life Sci Alliance ; 5(10)2022 10.
Article in English | MEDLINE | ID: mdl-35995567

ABSTRACT

Lymphocytes can heavily influence intestinal health, but resolving intestinal lymphocyte function is challenging as the intestine contains a vastly heterogeneous mixture of cells. Pigs are an advantageous biomedical model, but deeper understanding of intestinal lymphocytes is warranted to improve model utility. Twenty-six cell types were identified in the porcine ileum by single-cell RNA sequencing and further compared with cells in human and murine ileum. Though general consensus of cell subsets across species was revealed, some porcine-specific lymphocyte subsets were identified. Differential tissue dissection and in situ analyses conferred spatial context, revealing similar locations of lymphocyte subsets in Peyer's patches and epithelium in pig-to-human comparisons. Like humans, activated and effector lymphocytes were abundant in the ileum but not periphery of pigs, suggesting tissue-specific and/or activation-associated gene expression. Gene signatures for peripheral and ileal innate lymphoid cells newly discovered in pigs were defined and highlighted similarities to human innate lymphoid cells. Overall, we reveal novel lymphocyte subsets in pigs and highlight utility of pigs for intestinal research applications.


Subject(s)
Lymphocytes , Peyer's Patches , Animals , Humans , Ileum/metabolism , Immunity, Innate , Intestines , Mice , Peyer's Patches/metabolism , Swine
4.
Foodborne Pathog Dis ; 19(7): 485-494, 2022 07.
Article in English | MEDLINE | ID: mdl-35759425

ABSTRACT

Conventional culture-based techniques are largely inadequate in elucidating the microbiota contained in an environment, due to low recovery within a complex bacterial community. This limitation has been mitigated by the use of next-generation sequencing (NGS)-based approaches thereby facilitating the identification and classification of both culturable and uncultivable microorganisms. Amplicon targeted NGS methods, such as 16S ribosomal RNA (16S rRNA) and shotgun metagenomics, are increasingly being applied in various settings such as in food production environments to decipher the microbial consortium therein. Even though multiple food matrices/food production environments have been studied, the low-moisture environment associated with bakery food production remains to be investigated. To address this knowledge gap, in this study, we investigated the microbiome associated with two bakery production sites (designated as A and B) located in Ireland using 16S rRNA-amplicon-based sequencing. Amplicons corresponding to a hypervariable region contained within the 16S rRNA gene were amplified from DNA samples purified from environmental swabs and ingredients collected at both sites at various stages (preparation, production, postproduction, and storage) across the bakery production chain, over three seasons (winter, spring, and summer). These amplicons were sequenced, and data were analyzed using the mothur pipeline and visualized using MicrobiomeAnalyst and a series of R packages. The top seven bacterial phyla identified at both sites were composed of Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Deinococcus-Thermus, Patescibacteria, and Verrucomicrobia. In addition, the phyla Tenericutes (Mycoplasmatota) and Acidobacteria were observed only in samples taken at site B. Different bacterial compositions were identified at each stage of production. These same bacteria were also found to be present in the final processed food suggesting the influence of the environment on the food matrix. This study is the first demonstration of the utility of 16S rRNA amplicon-based sequencing to describe the microbiota associated with bakery processing environments.


Subject(s)
Bacteria , Microbiota , Bacteria/genetics , DNA, Bacterial/genetics , High-Throughput Nucleotide Sequencing/methods , Metagenomics , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
5.
J Proteomics ; 262: 104602, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35526804

ABSTRACT

Leptospirosis is a global zoonotic disease affecting humans and livestock species. Bacterin vaccines lack cross protection between serogroups, and include multiple serovars propagated at 29 °C. Recent work demonstrated substantial variation in the transcriptome of identical species and serovars of Leptospira. Here, substantial differences in protein abundance profiles were identified in Leptospira borgpetersenii serovar Hardjo; strain HB203, which was isolated in the 1980s, compared to newer strains TC129 and TC273 isolated in 2016, and whether they were propagated at the routine temperature of 29 °C, compared to 37 °C which more closely emulates host infection. While 388 and 385 significantly differentially expressed (DE) proteins (FDR of 0.01) were identified in HB203 versus TC129, and HB203 versus TC273 when propagated at 29 °C respectively, only 66 and 4 DE proteins were identified in HB203 versus TC129, and HB203 versus TC273 when propagated at 37 °C respectively. Within each strain comparing temperatures, HB203 had 524 significantly DE proteins, TC129 had 347 DE proteins, and TC273 had 569 DE proteins. Data are available via ProteomeXchange with identifier PXD032831. Results highlight significant differential protein expression among identical serovars of L. borgpetersenii suggesting that bacterin vaccine design can benefit from consideration of strains employed and effects of temperature on growth. SIGNIFICANCE: Leptospirosis is a zoonotic disease caused by spirochete bacteria of the genus Leptospira. While leptospirosis affects over one million people per year, symptoms range vastly in severity from completely asymptomatic, to flu-like, to multi-organ failure and death in severe cases. Incidental hosts become infected after encountering pathogens directly from contact with another host, including domestic or wildlife animals, or indirectly from contaminated environments. Though animal vaccines exist, they lack cross protection across serogroups, and instead rely on inclusion of multiple carefully selected serovars from laboratory strains prepared at ~29 °C. Recent interest in gene expression at the Leptospira strain level, along with a newly achieved culture temperature of 37 °C (which more closely resembles host body temperature), led us to investigate the proteomic profiles of an older, established challenge strain HB203 in comparison to TC129 and TC273, two strains isolated in 2016 from abattoir cattle in the central United States. Herein, we identify substantial proteomic differences not only between strains of the same species and serovar, but notably between growth temperatures, collectively suggesting that bacterin vaccine composition may benefit from investigating strain selection and the temperature employed for growth of the bacteria used in bacterin preparation.


Subject(s)
Cattle Diseases , Leptospira , Leptospirosis , Animals , Bacterial Vaccines , Cattle , Humans , Proteome/genetics , Proteomics , Serogroup , Temperature , Zoonoses
6.
ACS Appl Bio Mater ; 5(2): 801-817, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35073697

ABSTRACT

The exceptional increase in antibiotic resistance in past decades motivated the scientific community to use silver as a potential antibacterial agent. However, due to its unknown antibacterial mechanism and the pattern of bacterial resistance to silver species, it has not been revolutionized in the health sector. This study deciphers mechanistic aspects of silver species, i.e., ions and lysozyme-coated silver nanoparticles (L-Ag NPs), against E. coli K12 through RNA sequencing analysis. The obtained results support the reservoir nature of nanoparticles for the controlled release of silver ions into bacteria. This study differentiates between the antibacterial mechanism of silver species by discussing the pathway of their entry in bacteria, sequence of events inside cells, and response of bacteria to overcome silver stress. Controlled release of ions from L-Ag NPs not only reduces bacterial growth but also reduces the likelihood of resistance development. Conversely, direct exposure of silver ions, leads to rapid activation of the bacterial defense system leading to development of resistance against silver ions, like the well-known antibiotic resistance problem. These findings provide valuable insight on the mechanism of silver resistance and antibacterial strategies deployed by E. coli K12, which could be a potential target for the generation of aim-based and effective nanoantibiotics.


Subject(s)
Escherichia coli K12 , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Delayed-Action Preparations , Escherichia coli/genetics , Escherichia coli K12/genetics , Ions , Metal Nanoparticles/therapeutic use , Silver/pharmacology
7.
Journal of Proteomics, v. 262, 104602, mai. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4318

ABSTRACT

Leptospirosis is a global zoonotic disease affecting humans and livestock species. Bacterin vaccines lack cross protection between serogroups, and include multiple serovars propagated at 29°C. Recent work demonstrated substantial variation in the transcriptome of identical species and serovars of Leptospira. Here, substantial differences in protein abundance profiles were identified in Leptospira borgpetersenii serovar Hardjo; strain HB203, which was isolated in the 1980s, compared to newer strains TC129 and TC273 isolated in 2016, and whether they were propagated at the routine temperature of 29°C, compared to 37°C which more closely emulates host infection. While 388 and 385 significantly differentially expressed (DE) proteins (FDR of 0.01) were identified in HB203 versus TC129, and HB203 versus TC273 when propagated at 29°C respectively, only 66 and 4 DE proteins were identified in HB203 versus TC129, and HB203 versus TC273 when propagated at 37°C respectively. Within each strain comparing temperatures, HB203 had 524 significantly DE proteins, TC129 had 347 DE proteins, and TC273 had 569 DE proteins. Data are available via ProteomeXchange with identifier PXD032831. Results highlight significant differential protein expression amongst identical serovars of L. borgpetersenii suggesting that bacterin vaccine design can benefit from consideration of strains employed and effects of temperature on growth.

8.
Appl Environ Microbiol ; 87(24): e0083021, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34644165

ABSTRACT

Cronobacter sakazakii is a typical example of a xerotolerant bacterium. It is epidemiologically linked to low-moisture foods like powdered infant formula (PIF) and is associated with high fatality rates among neonates. We characterized the xerotolerance in a clinically isolated strain, Cronobacter sakazakii ATCC™29544T, and compared the desiccation tolerance with that of an environmental strain, C. sakazakii SP291, whose desiccation tolerance was previously characterized. We found that, although the clinical strain was desiccation-tolerant, the level of tolerance was compromised when compared with that of the environmental strain. Transcriptome sequencing (RNA-seq)-based deep transcriptomic characterization identified a unique transcriptional profile in the clinical strain compared with what was already known for the environmental strain. As RNA-seq was also carried out under different TSB growth conditions, genes that were expressed specifically under desiccated conditions were identified and denoted as desiccation responsive genes (DRGs). Interestingly, these DRGs included transcriptomic factors like fnr, ramA, and genes associated with inositol metabolism, a phenotype as yet unreported in C. sakazakii. Further, the clinical strain did not express the proP gene, which was previously reported to be very important for desiccation survival and persistence. Interestingly, analysis of the plasmid genes showed that the iron metabolism in desiccated C. sakazakii ATCC™29544T cells specifically involved the siderophore cronobactin, encoded by the iucABCD genes. Confirmatory studies using quantitative reverse transcription-PCR (qRT-PCR) determined that, though the secondary desiccation response genes were upregulated in C. sakazakii ATCC™29544T, the level of upregulation was lower than that in C. sakazakii SP291. All these factors may collectively contribute to the compromised desiccation tolerance in the clinical strain. IMPORTANCE Cronobacter sakazakii has led to outbreaks in the past, particularly associated with foods that are low in moisture content. This species has adapted to survive in low water conditions and can survive in such environments for long periods. These characteristics have enabled the pathogen to contaminate powder infant formula, a food matrix with which the pathogen has been epidemiologically associated. Even though clinically adapted strains can also be isolated, there is no information on how the clinical strains adapt to low moisture environments. Our research assessed the adaptation of a clinically isolated strain to low moisture survival on sterile stainless steel coupons and compared the survival with that of a highly desiccation-tolerant environmental strain. We found that, even though the clinical strain is desiccation-tolerant, the rate of tolerance was compromised compared with that of the environmental strain. A deeper investigation using RNA-seq identified that the clinical strain used pathways different from that of the environmental strain to adapt to low-moisture conditions. This shows that the adaptation to desiccation conditions, at least for C. sakazakii, is strain-specific and that different strains have used different evolutionary strategies for adaptation.


Subject(s)
Cronobacter sakazakii , Desiccation , Transcriptome , Adaptation, Physiological , Biological Evolution , Cronobacter sakazakii/genetics , Genes, Bacterial , Phenotype
9.
Front Genet ; 12: 689406, 2021.
Article in English | MEDLINE | ID: mdl-34249103

ABSTRACT

Pigs are a valuable human biomedical model and an important protein source supporting global food security. The transcriptomes of peripheral blood immune cells in pigs were defined at the bulk cell-type and single cell levels. First, eight cell types were isolated in bulk from peripheral blood mononuclear cells (PBMCs) by cell sorting, representing Myeloid, NK cells and specific populations of T and B-cells. Transcriptomes for each bulk population of cells were generated by RNA-seq with 10,974 expressed genes detected. Pairwise comparisons between cell types revealed specific expression, while enrichment analysis identified 1,885 to 3,591 significantly enriched genes across all 8 cell types. Gene Ontology analysis for the top 25% of significantly enriched genes (SEG) showed high enrichment of biological processes related to the nature of each cell type. Comparison of gene expression indicated highly significant correlations between pig cells and corresponding human PBMC bulk RNA-seq data available in Haemopedia. Second, higher resolution of distinct cell populations was obtained by single-cell RNA-sequencing (scRNA-seq) of PBMC. Seven PBMC samples were partitioned and sequenced that produced 28,810 single cell transcriptomes distributed across 36 clusters and classified into 13 general cell types including plasmacytoid dendritic cells (DC), conventional DCs, monocytes, B-cell, conventional CD4 and CD8 αß T-cells, NK cells, and γδ T-cells. Signature gene sets from the human Haemopedia data were assessed for relative enrichment in genes expressed in pig cells and integration of pig scRNA-seq with a public human scRNA-seq dataset provided further validation for similarity between human and pig data. The sorted porcine bulk RNAseq dataset informed classification of scRNA-seq PBMC populations; specifically, an integration of the datasets showed that the pig bulk RNAseq data helped define the CD4CD8 double-positive T-cell populations in the scRNA-seq data. Overall, the data provides deep and well-validated transcriptomic data from sorted PBMC populations and the first single-cell transcriptomic data for porcine PBMCs. This resource will be invaluable for annotation of pig genes controlling immunogenetic traits as part of the porcine Functional Annotation of Animal Genomes (FAANG) project, as well as further study of, and development of new reagents for, porcine immunology.

10.
mBio ; 12(3): e0086721, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34098732

ABSTRACT

In bacteria, the defense system deployed to counter oxidative stress is orchestrated by three transcriptional factors, SoxS, SoxR, and OxyR. Although the regulon that these factors control is known in many bacteria, similar data are not available for Klebsiella pneumoniae. To address this data gap, oxidative stress was artificially induced in K. pneumoniae MGH78578 using paraquat and the corresponding oxidative stress regulon recorded using transcriptome sequencing (RNA-seq). The soxS gene was significantly induced during oxidative stress, and a knockout mutant was constructed to explore its functionality. The wild type and mutant were grown in the presence of paraquat and subjected to RNA-seq to elucidate the soxS regulon in K. pneumoniae MGH78578. Genes that are commonly regulated both in the oxidative stress and soxS regulons were identified and denoted as the oxidative SoxS regulon; these included a group of genes specifically regulated by SoxS. Efflux pump-encoding genes and global regulators were identified as part of this regulon. Consequently, the isogenic soxS mutant was found to exhibit a reduction in the minimum bactericidal concentration against tetracycline compared to that of the wild type. Impaired efflux activity, allowing tetracycline to be accumulated in the cytoplasm to bactericidal levels, was further evaluated using a tetraphenylphosphonium (TPP+) accumulation assay. The soxS mutant was also susceptible to tetracycline in vivo in a zebrafish embryo model. We conclude that the soxS gene could be considered a genetic target against which an inhibitor could be developed and used in combinatorial therapy to combat infections associated with multidrug-resistant K. pneumoniae. IMPORTANCE Antimicrobial resistance is a global health challenge. Few new antibiotics have been developed for use over the years, and preserving the efficacy of existing compounds is an important step to protect public health. This paper describes a study that examines the effects of exogenously induced oxidative stress on K. pneumoniae and uncovers a target that could be useful to harness as a strategy to mitigate resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Gene Expression Regulation, Bacterial/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Oxidative Stress/genetics , Regulon , Animals , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Gene Expression Profiling , Genetic Complementation Test , Humans , Klebsiella Infections/microbiology , Trans-Activators/genetics , Transcription, Genetic , Zebrafish
11.
Front Vet Sci ; 8: 613203, 2021.
Article in English | MEDLINE | ID: mdl-33889603

ABSTRACT

Consumption of contaminated poultry products is one of the main sources of human campylobacteriosis, of which Campylobacter jejuni subsp. jejuni (C. jejuni) and C. coli are responsible for ~98% of the cases. In turkeys, the ceca are an important anatomical site where Campylobacter asymptomatically colonizes. We previously demonstrated that commercial turkey poults colonized by C. jejuni showed acute changes in cytokine gene expression profiles, and histological intestinal lesions at 2 days post-inoculation (dpi). Cecal tonsils (CT) are an important part of the gastrointestinal-associated lymphoid tissue that surveil material passing in and out of the ceca, and generate immune responses against intestinal pathogens. The CT immune response toward Campylobacter remains unknown. In this study, we generated a kanamycin-resistant C. coli construct (CcK) to facilitate its enumeration from cecal contents after experimental challenge. In vitro analysis of CcK demonstrated no changes in motility when compared to the parent isolate. Poults were inoculated by oral gavage with CcK (5 × 107 colony forming units) or sterile-media (mock-colonized), and euthanized at 1 and 3 dpi. At both time points, CcK was recovered from cecal contents, but not from the mock-colonized group. As a marker of acute inflammation, serum alpha-1 acid glycoprotein was significantly elevated at 3 dpi in CcK inoculated poults compared to mock-infected samples. Significant histological lesions were detected in cecal and CT tissues of CcK colonized poults at 1 and 3 dpi, respectively. RNAseq analysis identified 250 differentially expressed genes (DEG) in CT from CcK colonized poults at 3 dpi, of which 194 were upregulated and 56 were downregulated. From the DEG, 9 significantly enriched biological pathways were identified, including platelet aggregation, response to oxidative stress and negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway. These data suggest that C. coli induced an acute inflammatory response in the intestinal tract of poults, and that platelet aggregation and oxidative stress in the CT may affect the turkey's ability to resist Campylobacter colonization. These findings will help to develop and test Campylobacter mitigation strategies to promote food safety in commercial turkeys.

12.
PLoS Negl Trop Dis ; 15(4): e0009320, 2021 04.
Article in English | MEDLINE | ID: mdl-33826628

ABSTRACT

BACKGROUND: Leptospirosis is a zoonotic, bacterial disease, posing significant health risks to humans, livestock, and companion animals around the world. Symptoms range from asymptomatic to multi-organ failure in severe cases. Complex species-specific interactions exist between animal hosts and the infecting species, serovar, and strain of pathogen. Leptospira borgpetersenii serovar Hardjo strains HB203 and JB197 have a high level of genetic homology but cause different clinical presentation in the hamster model of infection; HB203 colonizes the kidney and presents with chronic shedding while JB197 causes severe organ failure and mortality. This study examines the transcriptome of L. borgpetersenii and characterizes differential gene expression profiles of strains HB203 and JB197 cultured at temperatures during routine laboratory conditions (29°C) and encountered during host infection (37°C). METHODOLOGY/PRINCIPAL FINDINGS: L. borgpetersenii serovar Hardjo strains JB197 and HB203 were isolated from the kidneys of experimentally infected hamsters and maintained at 29°C and 37°C. RNAseq revealed distinct gene expression profiles; 440 genes were differentially expressed (DE) between JB197 and HB203 at 29°C, and 179 genes were DE between strains at 37°C. Comparison of JB197 cultured at 29°C and 37°C identified 135 DE genes while 41 genes were DE in HB203 with those same culture conditions. The consistent differential expression of ligB, which encodes the outer membrane virulence factor LigB, was validated by immunoblotting and 2D-DIGE. Differential expression of lipopolysaccharide was also observed between JB197 and HB203. CONCLUSIONS/SIGNIFICANCE: Investigation of the L. borgpetersenii JB197 and HB203 transcriptome provides unique insight into the mechanistic differences between acute and chronic disease. Characterizing the nuances of strain to strain differences and investigating the environmental sensitivity of Leptospira to temperature is critical to the development and progress of leptospirosis prevention and treatment technologies, and is an important consideration when serovars are selected and propagated for use as bacterin vaccines as well as for the identification of novel therapeutic targets.


Subject(s)
Leptospira/genetics , Serogroup , Temperature , Transcriptome , Animals , Cricetinae , Kidney/microbiology , Leptospira/isolation & purification , Leptospirosis/microbiology
13.
Front Microbiol ; 12: 638640, 2021.
Article in English | MEDLINE | ID: mdl-33658987

ABSTRACT

Infections associated with antimicrobial-resistant bacteria now represent a significant threat to human health using conventional therapy, necessitating the development of alternate and more effective antibacterial compounds. Silver nanoparticles (Ag NPs) have been proposed as potential antimicrobial agents to combat infections. A complete understanding of their antimicrobial activity is required before these molecules can be used in therapy. Lysozyme coated Ag NPs were synthesized and characterized by TEM-EDS, XRD, UV-vis, FTIR spectroscopy, zeta potential, and oxidative potential assay. Biochemical assays and deep level transcriptional analysis using RNA sequencing were used to decipher how Ag NPs exert their antibacterial action against multi-drug resistant Klebsiella pneumoniae MGH78578. RNAseq data revealed that Ag NPs induced a triclosan-like bactericidal mechanism responsible for the inhibition of the type II fatty acid biosynthesis. Additionally, released Ag+ generated oxidative stress both extra- and intracellularly in K. pneumoniae. The data showed that triclosan-like activity and oxidative stress cumulatively underpinned the antibacterial activity of Ag NPs. This result was confirmed by the analysis of the bactericidal effect of Ag NPs against the isogenic K. pneumoniae MGH78578 ΔsoxS mutant, which exhibits a compromised oxidative stress response compared to the wild type. Silver nanoparticles induce a triclosan-like antibacterial action mechanism in multi-drug resistant K. pneumoniae. This study extends our understanding of anti-Klebsiella mechanisms associated with exposure to Ag NPs. This allowed us to model how bacteria might develop resistance against silver nanoparticles, should the latter be used in therapy.

14.
Plos Negl Trop Dis, v. 15, n. 4, e0009320, abr. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3656

ABSTRACT

Background: Leptospirosis is a zoonotic, bacterial disease, posing significant health risks to humans, livestock, and companion animals around the world. Symptoms range from asymptomatic to multi-organ failure in severe cases. Complex species-specific interactions exist between animal hosts and the infecting species, serovar, and strain of pathogen. Leptospira borgpetersenii serovar Hardjo strains HB203 and JB197 have a high level of genetic homology but cause different clinical presentation in the hamster model of infection; HB203 colonizes the kidney and presents with chronic shedding while JB197 causes severe organ failure and mortality. This study examines the transcriptome of L. borgpetersenii and characterizes differential gene expression profiles of strains HB203 and JB197 cultured at temperatures during routine laboratory conditions (29°C) and encountered during host infection (37°C). Methodology/Principal findings: L. borgpetersenii serovar Hardjo strains JB197 and HB203 were isolated from the kidneys of experimentally infected hamsters and maintained at 29°C and 37°C. RNAseq revealed distinct gene expression profiles; 440 genes were differentially expressed (DE) between JB197 and HB203 at 29°C, and 179 genes were DE between strains at 37°C. Comparison of JB197 cultured at 29°C and 37°C identified 135 DE genes while 41 genes were DE in HB203 with those same culture conditions. The consistent DE of ligB, which encodes the outer membrane virulence factor LigB, was validated by immunoblotting and 2D-DIGE. Differential expression of lipopolysaccharide was also observed between JB197 and HB203. Conclusions/Significance: Investigation of the L. borgpetersenii JB197 and HB203 transcriptome provides unique insight into the mechanistic differences between acute and chronic disease. Characterizing the nuances of strain to strain differences and investigating the environmental sensitivity of Leptospira to temperature is critical to the development and progress of leptospirosis prevention and treatment technologies, and is an important consideration when serovars are selected and propagated for use as bacterin vaccines as well as for the identification of novel therapeutic targets.

15.
Genes (Basel) ; 11(11)2020 10 30.
Article in English | MEDLINE | ID: mdl-33142960

ABSTRACT

Multidrug-resistant (MDR; resistance to >3 antimicrobial classes) Salmonella enterica serovar I 4,[5],12:i:- strains were linked to a 2015 foodborne outbreak from pork. Strain USDA15WA-1, associated with the outbreak, harbors an MDR module and the metal tolerance element Salmonella Genomic Island 4 (SGI-4). Characterization of SGI-4 revealed that conjugational transfer of SGI-4 resulted in the mobile genetic element (MGE) replicating as a plasmid or integrating into the chromosome. Tolerance to copper, arsenic, and antimony compounds was increased in Salmonella strains containing SGI-4 compared to strains lacking the MGE. Following Salmonella exposure to copper, RNA-seq transcriptional analysis demonstrated significant differential expression of diverse genes and pathways, including induction of at least 38 metal tolerance genes (copper, arsenic, silver, and mercury). Evaluation of swine administered elevated concentrations of zinc oxide (2000 mg/kg) and copper sulfate (200 mg/kg) as an antimicrobial feed additive (Zn+Cu) in their diet for four weeks prior to and three weeks post-inoculation with serovar I 4,[5],12:i:- indicated that Salmonella shedding levels declined at a slower rate in pigs receiving in-feed Zn+Cu compared to control pigs (no Zn+Cu). The presence of metal tolerance genes in MDR Salmonella serovar I 4,[5],12:i:- may provide benefits for environmental survival or swine colonization in metal-containing settings.


Subject(s)
Drug Resistance, Multiple/genetics , Interspersed Repetitive Sequences/genetics , Salmonella enterica/genetics , Animals , Anti-Bacterial Agents/pharmacology , Disease Outbreaks/prevention & control , Drug Resistance, Multiple, Bacterial/drug effects , Genomic Islands/genetics , Microbial Sensitivity Tests/methods , Pork Meat , Serogroup , Swine , United States
16.
J Alzheimers Dis ; 76(3): 1047-1060, 2020.
Article in English | MEDLINE | ID: mdl-32597797

ABSTRACT

BACKGROUND: Significant work has identified genetic variants conferring risk and protection for Alzheimer's disease (AD), but functional effects of these variants is lacking, particularly in under-represented ancestral populations. Expression studies performed in easily accessible tissue, such as whole blood, can recapitulate some transcriptional changes occurring in brain and help to identify mechanisms underlying neurodegenerative processes. OBJECTIVE: We aimed to identify transcriptional differences between AD cases and controls in a cohort of diverse ancestry. METHODS: We analyzed the protein coding transcriptome using RNA sequencing from peripheral blood collected from 234 African American (AA) (115 AD, 119 controls) and 240 non-Hispanic Whites (NHW) (121 AD, 119 controls). To identify case-control differentially expressed genes and pathways, we performed stratified, joint, and interaction analyses using linear regression models within and across ancestral groups followed by pathway and gene set enrichment analyses. RESULTS: Overall, we identified 418 (291 upregulated, 127 downregulated) and 488 genes (352 upregulated, 136 downregulated) differentially expressed in the AA and NHW datasets, respectively, with only 16 genes commonly differentially expressed in both ancestral groups. Joint analyses provided greater power to detect case-control differences and identified 1,102 differentially expressed genes between cases and controls (812 upregulated, 290 downregulated). Interaction analysis identified only 27 genes with different effects in AA compared to NHW. Pathway and gene-set enrichment analyses revealed differences in immune response-related pathways that were enriched across the analyses despite different underlying gene sets. CONCLUSION: These results support the hypothesis of converging underlying pathophysiological processes in AD across ancestral groups.


Subject(s)
Alzheimer Disease , Brain/metabolism , Gene Expression Profiling , Transcriptome/immunology , Alzheimer Disease/genetics , Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Case-Control Studies , Down-Regulation , Gene Expression Profiling/methods , Humans , Sequence Analysis, RNA/methods , Signal Transduction/genetics , Up-Regulation
17.
Microbiol Resour Announc ; 8(40)2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31582436

ABSTRACT

The genome of a multidrug-resistant (MDR) Salmonella enterica subsp. enterica serovar I 4,[5],12:i:- isolate from the 2015 U.S. pork outbreak was sequenced. The complete nucleotide sequence of USDA15WA-1 is 5,031,277 bp, including Salmonella genomic island 4 encoding tolerance to multiple metals and an MDR module inserted in the fljB region.

18.
Neurol Genet ; 5(4): e342, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31403079

ABSTRACT

OBJECTIVE: Given the known strong relationship of DNA methylation with environmental exposure, we investigated whether brain regions affected in Parkinson disease (PD) were differentially methylated between PD cases and controls. METHODS: DNA chip arrays were used to perform a genome-wide screen of DNA methylation on the dorsal motor nucleus of the vagus (DMV), substantia nigra (SN), and cingulate gyrus (CG) of pathologically confirmed PD cases and controls selected using the criteria of Beecham et al. Analysis examined differentially methylated regions (DMRs) between cases and controls for each brain area. RNA sequencing and pathway analysis were also performed for each brain area. RESULTS: Thirty-eight PD cases and 41 controls were included in the analysis. Methylation studies revealed 234 significant DMR in the DMV, 44 in the SN, and 141 in the CG between cases and controls (Sidak p < 0.05). Pathway analysis of these genes showed significant enrichment for the Wnt signaling pathway (FDR < 0.01). CONCLUSIONS: Our data suggest that significant DNA methylation changes exist between cases and controls in PD, especially in the DMV, one of the areas affected earliest in PD. The etiology of these methylation changes is not yet known, but the predominance of methylation changes occurring in the DMV supports the hypothesis that vagus nerve function, perhaps involving the gastrointestinal system, is important in PD pathogenesis. These data also give independent support that genes involved in Wnt signaling are a likely factor in the neurodegenerative processes of PD.

19.
Front Microbiol ; 10: 92, 2019.
Article in English | MEDLINE | ID: mdl-30814979

ABSTRACT

Antimicrobial efflux is one of the important mechanisms causing multi-drug resistance (MDR) in bacteria. Chemosensitizers like 1-(1-naphthylmethyl)-piperazine (NMP) can inhibit an efflux pump and therefore can overcome MDR. However, secondary effects of NMP other than efflux pump inhibition are rarely investigated. Here, using phenotypic assays, phenotypic microarray and transcriptomic assays we show that NMP creates membrane destabilization in MDR Klebsiella pneumoniae MGH 78578 strain. The NMP mediated membrane destabilization activity was measured using ß-lactamase activity, membrane potential alteration studies, and transmission electron microscopy assays. Results from both ß-lactamase and membrane potential alteration studies shows that both outer and inner membranes are destabilized in NMP exposed K. pneumoniae MGH 78578 cells. Phenotypic Microarray and RNA-seq were further used to elucidate the metabolic and transcriptional signals underpinning membrane destabilization. Membrane destabilization happens as early as 15 min post-NMP treatment. Our RNA-seq data shows that many genes involved in envelope stress response were differentially regulated in the NMP treated cells. Up-regulation of genes encoding the envelope stress response and repair systems show the distortion in membrane homeostasis during survival in an environment containing sub-inhibitory concentration of NMP. In addition, the lsr operon encoding the production of autoinducer-2 responsible for biofilm production was down-regulated resulting in reduced biofilm formation in NMP treated cells, a phenotype confirmed by crystal violet-based assays. We postulate that the early membrane disruption leads to destabilization of inner membrane potential, impairing ATP production and consequently resulting in efflux pump inhibition.

20.
Appl Environ Microbiol ; 85(3)2019 02 01.
Article in English | MEDLINE | ID: mdl-30446557

ABSTRACT

Cronobacter sakazakii is a xerotolerant neonatal pathogen epidemiologically linked to powdered infant food formula, often resulting in high mortality rates. Here, we used transcriptome sequencing (RNA-seq) to provide transcriptional insights into the survival of C. sakazakii in desiccated conditions. Our RNA-seq data show that about 22% of the total C. sakazakii genes were significantly upregulated and 9% were downregulated during desiccation survival. When reverse transcription-quantitative PCR (qRT-PCR) was used to validate the RNA-seq data, we found that the primary desiccation response was gradually downregulated during the tested 4 hours of desiccation, while the secondary response remained constitutively upregulated. The 4-hour desiccation tolerance of C. sakazakii was dependent on the immediate microenvironment surrounding the bacterial cell. The removal of Trypticase soy broth (TSB) salts and the introduction of sterile infant formula residues in the microenvironment enhanced the desiccation survival of C. sakazakii SP291. The trehalose biosynthetic pathway encoded by otsA and otsB, a prominent secondary bacterial desiccation response, was highly upregulated in desiccated C. sakazakiiC. sakazakii SP291 ΔotsAB was significantly inhibited compared with the isogenic wild type in an 8-hour desiccation survival assay, confirming the physiological importance of trehalose in desiccation survival. Overall, we provide a comprehensive RNA-seq-based transcriptional overview along with confirmation of the phenotypic importance of trehalose metabolism in Cronobacter sakazakii during desiccation.IMPORTANCECronobacter sakazakii is a pathogen of importance to neonatal health and is known to persist in dry food matrices, such as powdered infant formula (PIF) and its associated production environment. When infections are reported in neonates, mortality rates can be high. The success of this bacterium in surviving these low-moisture environments suggests that Cronobacter species can respond to a variety of environmental signals. Therefore, understanding those signals that aid the persistence of this pathogen in these ecological niches is an important step toward the development of strategies to reduce the risk of contamination of PIF. This research led to the identification of candidate genes that play a role in the persistence of this pathogen in desiccated conditions and, thereby, serve as a model target to design future strategies to mitigate PIF-associated survival of C. sakazakii.


Subject(s)
Cronobacter sakazakii/genetics , Enterobacteriaceae Infections/microbiology , RNA, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cronobacter sakazakii/classification , Cronobacter sakazakii/isolation & purification , Cronobacter sakazakii/metabolism , Humans , Infant Formula/microbiology , RNA, Bacterial/metabolism , Sequence Analysis, RNA , Transcription, Genetic , Trehalose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...