Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Nanosci ; : 1-11, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36120603

ABSTRACT

Nanostructured Zinc oxide (ZnO) materials have attained exciting research interests among various metal oxide nanoparticles due to their unique features. Thus, the scope of applications for ZnO nanoparticles (ZnO NPs) is vast and efficient. The current study demonstrates a simple and environmental-friendly approach for the synthesis of ZnO NPs using the extract of the Scoparia Dulcis. Scoparia Dulcis is a common medicinal plant in Kerala (India) that is traditionally used for its medicinal properties. Morphological characterizations of the as-synthesized ZnO NPs were evaluated using X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), and field-emission scanning electron microscopy (FESEM). The results revealed that ZnO NPs showed pebble-like morphology and possessed an average particle size of ~ 20 nm. Further, antibacterial and antifungal activities of as-prepared ZnO NPs were investigated against E. coli, Staphylococcus aureus, as well as Candida albicans, and Aspergillus niger, respectively, using the agar-well diffusion method. The results revealed that the prepared ZnO NPs shows excellent antimicrobial activity against the examined microorganisms. Moreover, the antioxidant activity of the as-synthesized ZnO NPs was evaluated using the DPPH assay, which indicated an excellent IC50 value of 1.78 µg/mL that shows high antioxidant activity. All these results proved that the S. dulcis plant extract-mediated synthesis method is a simple, low-cost, eco-friendly procedure for preparing efficient ZnO NPs for biomedical applications.

2.
Sens Int ; 2: 100096, 2021.
Article in English | MEDLINE | ID: mdl-34766054

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA virus species with a zoonotic origin and responsible for the coronavirus disease 2019(COVID-19). This novel virus has an extremely high infectious rate, which occurs through the contact of contaminated surfaces and also by cough, sneeze, hand-to-mouth-to-eye contact with an affected person. The progression of infection, which goes beyond complications of pneumonia to affecting other physiological functions which cause gastrointestinal, Renal, and neurological complication makes this a life threatening condition. Intense efforts are going across the scientific community in elucidating various aspects of this virus, such as understanding the pathophysiology of the disease, molecular biology, and cellular pathways of viral replication. We hope that nanotechnology and material science can provide a significant contribution to tackle this problem through both diagnostic and therapeutic strategies. But the area is still in the budding phase, which needs urgent and significant attention. This review provides a brief idea regarding the various nanotechnological approaches reported for managing COVID-19 infection. The nanomaterials recently said to have good antiviral activities like Carbon nanotubes (CNTs) and quantum dots (QDs) were also discussed since they are also in the emerging stage of attaining research interest regarding antiviral applications.

3.
Nanomaterials (Basel) ; 10(5)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32354113

ABSTRACT

Global health is facing the most dangerous situation regarding the novel severe acute respiratory syndrome called coronavirus 2 (SARS-CoV-2), which is widely known as the abbreviated COVID-19 pandemic. This is due to the highly infectious nature of the disease and its possibility to cause pneumonia induced death in approximately 6.89% of infected individuals (data until 27 April 2020). The pathogen causing COVID-19 is called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which is believed to be originated from the Wuhan Province in China. Unfortunately, an effective and approved vaccine for SARS-CoV-2 virus is still not available, making the situation more dangerous and currently available medical care futile. This unmet medical need thus requires significant and very urgent research attention to develop an effective vaccine to address the SARS-CoV-2 virus. In this review, the state-of-the-art drug design strategies against the virus are critically summarized including exploitations of novel drugs and potentials of repurposed drugs. The applications of nanochemistry and general nanotechnology was also discussed to give the status of nanodiagnostic systems for COVID-19.

4.
Environ Sci Pollut Res Int ; 27(21): 26025-26035, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32405942

ABSTRACT

Cancer is still considered a "hopeless case", besides all of the advancements in oncology research. On the other hand, the natural products, as effective lead molecules, have gained significant interest for research due to the absence of toxic and harmful side effects usually associated with conventional treatment methods. Medicinal properties of herbal plants are strongly evidenced in traditional medicine from ancient times. In the context above, withaferin A (WA) was identified as the active principle of the plant Withania somnifera, its molecule being reported to have excellent anticancer and tumour inhibition activities in various cell lines. Furthermore, the in silico approaches in the medicinal chemistry of WA revealed the biological targets and gave momentum for the research that leads to many amazing pharmacological activities of WA which are not yet explored. This includes a broad spectrum of anticancer actions manifested in different organs (breast, pancreas, colon), melanoma and B cell lymphoma, etc. This review is an extensive survey of the most recent anticancer studies reported for WA, along with its mechanism of action and details about its in vitro and/or in vivo behaviour.


Subject(s)
Panax , Withania , Withanolides , Plant Extracts
5.
ChemSusChem ; 13(15): 3754-3765, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32338453

ABSTRACT

Two-dimensional materials have led to a leap forward in materials science research, especially in the fields of energy conversion and storage. Borophene and its spherical counterpart boron fullerene represent emerging materials that have attracted much attention in the whole area of advanced energy materials and technologies. Owing to their prominent features, such as electronic environment and geometry, borophene and boron fullerene have been used in versatile applications, such as supercapacitors, superconductors, anode materials for photochemical water splitting, and biosensors. Herein, one of the most promising applications/areas of hydrogen storage is discussed. Boron fullerenes have been considered and discussed for hydrogen-storage applications, and recently borophene was also included in the list of materials with promising hydrogen-storage properties. Studies focus mainly on doped borophene systems over pristine borophene due to enhanced features available upon decoration with metal atoms. This Review introduces very recent progress and novel paradigms with respect to both borophene derivatives and boron fullerene based systems reported for hydrogen storage, with a focus on the synthesis, physiochemical properties, hydrogen-storage mechanism, and practical applications.

6.
Biophys Rev ; 12(3): 703-718, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32140918

ABSTRACT

Recently, medical research has been shifting its focus to nanomedicine and nanotherapeutics in the pursuit of drug development research. Quantum dots (QDs) are a critical class of nanomaterials due to their unique properties, which include optical, electronic, and engineered biocompatibility in physiological environments. These properties have made QDs an attractive biomedical resource such that they have found application as both in vitro labeling and in vivo theranostic (therapy-diagnostic) agents. Considerable research has been conducted exploring the suitability of QDs in theranostic applications, but the cytotoxicity of QDs remains an obstacle. Several types of QDs have been investigated over the past decades, which may be suitable for use in biomedical applications if the barrier of cytotoxicity can be resolved. This review attempts to report and analyze the cytotoxicity of the major QDs along with relevant related aspects.

7.
Nanoscale Adv ; 2(5): 1760-1773, 2020 May 19.
Article in English | MEDLINE | ID: mdl-36132507

ABSTRACT

Nanoparticles possess fascinating properties and applications, and there has been increasing critical consideration of their use. Because carbon is a component with immaterial cytotoxicity and extensive biocompatibility with different components, carbon nanomaterials have a wide scope of potential uses. Carbon nanodots are a type of carbon nanoparticle that is increasingly being researched because of their astounding properties such as extraordinary luminescence, simplicity of amalgamation and surface functionalization, and biocompatibility. Because of these properties, carbon nanodots can be used as material sensors, as indicators in fluorescent tests, and as nanomaterials for biomedical applications. In this review, we report on the ongoing and noteworthy utilization of carbon quantum dots such as bioimaging tests and photocatalytic applications. In addition, the extension and future components of these materials, which can be investigated for new potential applications, are discussed.

8.
CNS Neurol Disord Drug Targets ; 18(6): 432-445, 2019.
Article in English | MEDLINE | ID: mdl-31187716

ABSTRACT

The development of chalcone-based compounds for CNS disorders has been explored by many research groups. Chalcones are being considered as a potent organic scaffold with widespread applications in the field of drug discovery and medicinal chemistry. The planar or semi-planar geometry of chalcones with various functionalities impinged on the terminal aromatic systems renders the molecule its bio-activity including anti-cancer, anti-malarial, anti-microbial, anti-fungal, antileishmanial, anti-viral, anti-diabetic, anti-hypertensive properties, etc. Moreover, cutting-edge research has been executed in the domain of Central Nervous System (CNS) based scheme, further, their identification and classifications also remain of high interest in the field of medicinal chemistry but the specific reviews are limited. Hence, the present review highlights the significance of chalcones toward their CNS activities (up to 2019), which include anti-depressant activity, anxiolytic activity, activity with GABA receptors, acetylcholinesterase (AChE) and butyryl cholinesterase (BChE) inhibitions, activity as adenosine receptor antagonists anti-Alzheimer's agents, ß-amyloid plaques imaging agents, monoamine oxidase inhibition. To our knowledge, this is the first review exclusively for CNS activity profile of chalcones.


Subject(s)
Central Nervous System Diseases/drug therapy , Chalcones/pharmacology , Cholinesterase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/pharmacology , Amyloid beta-Peptides/antagonists & inhibitors , Chalcones/chemistry , Humans , Monoamine Oxidase Inhibitors/chemistry , Structure-Activity Relationship
9.
Curr Drug Targets ; 20(12): 1255-1263, 2019.
Article in English | MEDLINE | ID: mdl-30961492

ABSTRACT

Nanotechnology has emerged as one of the leading research areas involving nanoscale manipulation of atoms and molecules. During the past decade, the growth of nanotechnology has been one of the most important developments that have taken place in the biomedical field. The new generation nanomaterials like Quantum dots are gaining much importance. Also, there is a growing interest in the development of nano-theranostics platforms in medical diagnostics, biomedical imaging, drug delivery, etc. Quantum dots are also known as nanoscale semiconductor crystals, with unique electronic and optical properties. Recently, silicon quantum dots are being studied extensively due to their less-toxic, inert nature and ease of surface modification. The silicon quantum dots (2-10nm) are comparatively stable, having optical properties of silicon nanocrystals. This review focuses on silicon quantum dots and their various biomedical applications like drug delivery regenerative medicine and tissue engineering. Also, the processes involved in their modification for various biomedical applications along with future aspects are discussed.


Subject(s)
Quantum Dots/chemistry , Silicon/chemistry , Drug Delivery Systems , Humans , Regenerative Medicine , Theranostic Nanomedicine , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...