Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 118(25): 4451-63, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24884484

ABSTRACT

In order to develop a new photocatalytic system, we designed a new redox-active module (5) to hold both a photosensitizer part, [Ru(II)(terpy)(bpy)X](n+) (where terpy = 2,2':6',2''-terpyridine and bpy = 2,2'-bipyridine), and a popular Jacobsen catalytic part, salen-Mn(III), covalently linked through a pyridine-based electron-relay moiety. On the basis of nanosecond laser flash photolysis studies, an intramolecular electron transfer mechanism from salen-Mn(III) to photooxidized Ru(III) chromophore yielding the catalytically active high-valent salen-Mn(IV) species was proposed. To examine the reactivity of such photogenerated salen-Mn(IV), we employed organic sulfide as substrate. Detection of the formation of a Mn(III)-phenoxyl radical and a sulfur radical cation during the course of reaction using time-resolved transient absorption spectroscopy confirms the electron transfer nature of the reaction. This is the first report for the electron transfer reaction of organic sulfide with the photochemically generated salen-Mn(IV) catalytic center.

2.
J Org Chem ; 67(5): 1506-14, 2002 Mar 08.
Article in English | MEDLINE | ID: mdl-11871880

ABSTRACT

The oxidation of a series of para-substituted phenyl methyl sulfides was carried out with several oxo(salen)iron (salen = N,N'-bis(salicylidine)ethylenediaminato) complexes in acetonitrile. The oxo complex [O=Fe(IV)(salen)](*+), generated from an iron(III) [bond] salen complex and iodosylbenzene, effectively oxidizes the organic sulfides to the corresponding sulfoxides. The formation of [O [double bond] Fe(IV)(salen)](*+) as the active oxidant is supported by resonance Raman studies. The kinetic data indicate that the reaction is first-order in the oxidant and fractional-order with respect to sulfide. The observed saturation kinetics of the reaction and spectral data indicate that the substrate binds to the oxidant before the rate-controlling step. The rate constant (k) values for the product formation step determined using Michaelis-Menten kinetics correlate well with Hammett sigma constants, giving reaction constant (rho) values in the range of -0.65 to -1.54 for different oxo(salen)iron complexes. The log k values observed in the oxidation of each aryl methyl sulfide by substituted oxo(salen)iron complexes also correlate with Hammett sigma constants, giving positive rho values. The substituent effect, UV-vis absorption, and EPR spectral studies indicate oxygen atom transfer from the oxidant to the substrate in the rate-determining step.


Subject(s)
Ethylenediamines/chemistry , Ferric Compounds/chemistry , Acetonitriles/chemistry , Catalysis , Chromium/chemistry , Electron Spin Resonance Spectroscopy , Enzymes , Kinetics , Manganese/chemistry , Models, Biological , Molecular Structure , Organometallic Compounds/chemistry , Oxidation-Reduction , Ruthenium/chemistry , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman , Sulfides/chemistry , Sulfoxides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...