Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Article in English | MEDLINE | ID: mdl-36430059

ABSTRACT

Monodominant (one species dominates) or polidominant (multiple species dominate) cyanobacterial blooms are pronounced in productive freshwater ecosystems and pose a potential threat to the biota due to the synthesis of toxins. Seasonal changes in cyanobacteria species and cyanometabolites composition were studied in two shallow temperate eutrophic lakes. Data on cyanobacteria biomass and diversity of dominant species in the lakes were combined with chemical and molecular analyses of fifteen potentially toxin-producing cyanobacteria species (248 isolates from the lakes). Anatoxin-a, saxitoxin, microcystins and other non-ribosomal peptides formed the diverse profiles in monodominant (Planktothrix agardhii) and polidominant (Aphanizomenon gracile, Limnothrix spp. and Planktolyngbya limnetica) lakes. However, the harmfulness of the blooms depended on the ability of the dominant species to synthesize cyanometabolites. It was confirmed that P. agardhii produced a greater amount and diverse range of MCs and other NRPs. In the polidominant lake, isolates of the co-dominant A. gracile, L. planctonica and P. limnetica synthesized no or only small amounts of cyanometabolites. In general, the profile of cyanometabolites was greater in cyanobacteria isolates than in environmental samples, indicating a high potential for toxic cyanobacteria bloom.


Subject(s)
Cyanobacteria , Lakes , Ecosystem , Biota , Biomass
2.
ACS Omega ; 7(14): 11818-11828, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35449984

ABSTRACT

Puwainaphycins (PUW) and minutissamides (MIN) are structurally homologous cyclic lipopeptides that exhibit high structural variability and possess antifungal and cytotoxic activities. While only a minor variation can be found in the amino acid composition of the peptide cycle, the fatty acid (FA) moiety varies largely. The effect of FA functionalization on the bioactivity of PUW/MIN chemical variants is poorly understood. A rapid and selective liquid chromatography-mass spectrometry-based method led us to identify 13 PUW/MIN (1-13) chemical variants from the benthic cyanobacterium Nodularia harveyana strain UHCC-0300 from the Baltic Sea. Five new variants identified were designated as PUW H (1), PUW I (2), PUW J (4), PUW K (10), and PUW L (13) and varied slightly in the peptidic core composition, but a larger variation was observed in the oxo-, chloro-, and hydroxy-substitutions on the FA moiety. To address the effect of FA substitution on the cytotoxic effect, the major variants (3 and 5-11) together with four other PUW/MIN variants (14-17) previously isolated were included in the study. The data obtained showed that hydroxylation of the FA moiety abolishes the cytotoxicity or significantly reduces it when compared with the oxo-substituted C18-FA (compounds 5-8). The oxo-substitution had only a minor effect on the cytotoxicity of the compound when compared to variants bearing no substitution. The activity of PUW/MIN variants with chlorinated FA moieties varied depending on the position of the chlorine atom on the FA chain. This study also shows that variation in the amino acids distant from the FA moiety (position 4-8 of the peptide cycle) does not play an important role in determining the cytotoxicity of the compound. These findings confirmed that the lipophilicity of FA is essential to maintain the cytotoxicity of PUW/MIN lipopeptides. Further, a 63 kb puwainaphycin biosynthetic gene cluster from a draft genome of the N. harveyana strain UHCC-0300 was identified. This pathway encoded two specific lipoinitiation mechanisms as well as enzymes needed for the modification of the FA moiety. Examination on biosynthetic gene clusters and the structural variability of the produced PUW/MIN suggested different mechanisms of fatty-acyl-AMP ligase cooperation with accessory enzymes leading to a new set of PUW/MIN variants bearing differently substituted FA.

3.
Front Microbiol ; 12: 684565, 2021.
Article in English | MEDLINE | ID: mdl-34803938

ABSTRACT

Microbial natural products are compounds with unique chemical structures and diverse biological activities. Cyanobacteria commonly possess a wide range of biosynthetic gene clusters (BGCs) to produce natural products. Although natural product BGCs have been found in almost all cyanobacterial genomes, little attention has been given in cyanobacterial research to the partitioning of these biosynthetic pathways in chromosomes and plasmids. Cyanobacterial plasmids are believed to disperse several natural product BGCs, such as toxins, by plasmids through horizontal gene transfer. Therefore, plasmids may confer the ability to produce toxins and may play a role in the evolution of diverse natural product BGCs from cyanobacteria. Here, we performed an analysis of the distribution of natural product BGCs in 185 genomes and mapped the presence of genes involved in the conjugation in plasmids. The 185 analyzed genomes revealed 1817 natural products BGCs. Individual genomes contained 1-42 biosynthetic pathways (mean 8), 95% of which were present in chromosomes and the remaining 5% in plasmids. Of the 424 analyzed cyanobacterial plasmids, 12% contained homologs of genes involved in conjugation and natural product biosynthetic pathways. Among the biosynthetic pathways in plasmids, manual curation identified those to produce aeruginosin, anabaenopeptin, ambiguine, cryptophycin, hassallidin, geosmin, and microcystin. These compounds are known toxins, protease inhibitors, odorous compounds, antimicrobials, and antitumorals. The present study provides in silico evidence using genome mining that plasmids may be involved in the distribution of natural product BGCs in cyanobacteria. Consequently, cyanobacterial plasmids have importance in the context of biotechnology, water management, and public health risk assessment. Future research should explore in vivo conjugation and the end products of natural product BGCs in plasmids via chemical analyses.

4.
ACS Chem Biol ; 16(11): 2537-2546, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34661384

ABSTRACT

Serine proteases regulate many physiological processes and play a key role in a variety of cancers. Aeruginosins are a family of natural products produced by cyanobacteria that exhibit pronounced structural diversity and potent serine protease inhibition. Here, we sequenced the complete genome of Nodularia sphaerocarpa UHCC 0038 and identified the 43.7 kb suomilide biosynthetic gene cluster. Bioinformatic analysis demonstrated that suomilide belongs to the aeruginosin family of natural products. We identified 103 complete aeruginosin biosynthetic gene clusters from 12 cyanobacterial genera and showed that they encode an unexpected chemical diversity. Surprisingly, purified suomilide inhibited human trypsin-2 and -3, with IC50 values of 4.7 and 11.5 nM, respectively, while trypsin-1 was inhibited with an IC50 of 104 nM. Molecular dynamics simulations suggested that suomilide has a long residence time when bound to trypsins. This was confirmed experimentally for trypsin-1 and -3 (residence times of 1.5 and 57 min, respectively). Suomilide also inhibited the invasion of aggressive and metastatic PC-3M prostate cancer cells without affecting cell proliferation. The potent inhibition of trypsin-3, together with a long residence time and the ability to inhibit prostate cancer cell invasion, makes suomilide an attractive drug lead for targeting cancers that overexpress trypsin-3. These results substantially broaden the genetic and chemical diversity of the aeruginosin family and suggest that aeruginosins may be a source of selective inhibitors of human serine proteases.


Subject(s)
Azabicyclo Compounds/pharmacology , Biological Products/pharmacology , Trypsin Inhibitors/pharmacology , Biological Products/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Genes, Bacterial , Humans , Nodularia/genetics , Trypsin Inhibitors/isolation & purification
5.
Harmful Algae ; 108: 102101, 2021 08.
Article in English | MEDLINE | ID: mdl-34588122

ABSTRACT

Water bloom-forming cyanobacteria have a severe impact on freshwater quality. Although some cyanobacterial toxins such as microcystins have been studied extensively, other toxins like anatoxin-a (ATX) and their structural analogs - as well as cyanobacterial taxa producing these toxins remain to be explored in detail. The present study investigated levels of ATX, CYN and their homologs along with the occurrence of anaC and cyrJ genes in water blooms in 16 sites in the Czech Republic that were pre-selected concerning the presence of potential toxin producers. Besides, we also studied toxins and genes in a series of strains available in our laboratories. ATX and its congener HATX were detected in 5 natural biomass samples from the Czech Republic (maximum concentration 2.8 micrograms per gram d.w.). Interestingly, the anaC gene coding for ATX production was not detected in any of these toxin-positive biomass samples. The concentrations of ATX congeners in cyanobacterial laboratory strains were about 10-times higher than those of the original ATX, which calls for further research addressing levels and hazards of ATX analogs. Regarding the CYN and 7-deoxyCYN (other CYN congeners were not analyzed in this study) - these toxins were identified in a single small pond in the Czech Republic at concentrations 4.3 and 2.7 micrograms per gram of biomass d.w., respectively (corresponded to dissolved concentrations higher than 1 microgram per liter). The CYN-positive sample was dominated by CYN-producing taxa Raphidiopsis (basionym Cylindrospermopsis) and Cuspidothrix. We also confirmed the presence of a specific cyrJ gene in this natural bloom sample. To our knowledge, this is the first study pointing to Raphidiopsis (Cylindrospermopsis) and Cuspidothrix as producers of CYN in Europe. This observation calls for further research because of their increasing occurrence in (Central) Europe along with the global change. The present study demonstrates the importance of using combined (taxonomical, analytical, and molecular) approaches in the assessment of hazardous cyanobacteria and their toxins in freshwaters.


Subject(s)
Alkaloids , Tropanes , Cyanobacteria Toxins , Czech Republic
6.
Mar Drugs ; 19(6)2021 May 24.
Article in English | MEDLINE | ID: mdl-34073758

ABSTRACT

Sponges form symbiotic relationships with diverse and abundant microbial communities. Cyanobacteria are among the most important members of the microbial communities that are associated with sponges. Here, we performed a genus-wide comparative genomic analysis of the newly described marine benthic cyanobacterial genus Leptothoe (Synechococcales). We obtained draft genomes from Le. kymatousa TAU-MAC 1615 and Le. spongobia TAU-MAC 1115, isolated from marine sponges. We identified five additional Leptothoe genomes, host-associated or free-living, using a phylogenomic approach, and the comparison of all genomes showed that the sponge-associated strains display features of a symbiotic lifestyle. Le. kymatousa and Le. spongobia have undergone genome reduction; they harbored considerably fewer genes encoding for (i) cofactors, vitamins, prosthetic groups, pigments, proteins, and amino acid biosynthesis; (ii) DNA repair; (iii) antioxidant enzymes; and (iv) biosynthesis of capsular and extracellular polysaccharides. They have also lost several genes related to chemotaxis and motility. Eukaryotic-like proteins, such as ankyrin repeats, playing important roles in sponge-symbiont interactions, were identified in sponge-associated Leptothoe genomes. The sponge-associated Leptothoe stains harbored biosynthetic gene clusters encoding novel natural products despite genome reduction. Comparisons of the biosynthetic capacities of Leptothoe with chemically rich cyanobacteria revealed that Leptothoe is another promising marine cyanobacterium for the biosynthesis of novel natural products.


Subject(s)
Cyanobacteria/genetics , Cyanobacteria/metabolism , Genome, Bacterial , Porifera/microbiology , Animals , Biological Products/metabolism , Phylogeny , Secondary Metabolism , Symbiosis
7.
Org Biomol Chem ; 19(25): 5577-5588, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34085692

ABSTRACT

Laxaphycins are a family of cyclic lipopeptides with synergistic antifungal and antiproliferative activities. They are produced by multiple cyanobacterial genera and comprise two sets of structurally unrelated 11- and 12-residue macrocyclic lipopeptides. Here, we report the discovery of new antifungal laxaphycins from Nostoc sp. UHCC 0702, which we name heinamides, through antimicrobial bioactivity screening. We characterized the chemical structures of eight heinamide structural variants A1-A3 and B1-B5. These variants contain the rare non-proteinogenic amino acids 3-hydroxy-4-methylproline, 4-hydroxyproline, 3-hydroxy-d-leucine, dehydrobutyrine, 5-hydroxyl ß-amino octanoic acid, and O-carbamoyl-homoserine. We obtained an 8.6-Mb complete genome sequence from Nostoc sp. UHCC 0702 and identified the 93 kb heinamide biosynthetic gene cluster. The structurally distinct heinamides A1-A3 and B1-B5 variants are synthesized using an unusual branching biosynthetic pathway. The heinamide biosynthetic pathway also encodes several enzymes that supply non-proteinogenic amino acids to the heinamide synthetase. Through heterologous expression, we showed that (2S,4R)-4-hydroxy-l-proline is supplied through the action of a novel enzyme LxaN, which hydroxylates l-proline. 11- and 12-residue heinamides have the characteristic synergistic activity of laxaphycins against Aspergillus flavus FBCC 2467. Structural and genetic information of heinamides may prove useful in future discovery of natural products and drug development.


Subject(s)
Lipopeptides
8.
Physiol Plant ; 173(2): 639-650, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34145585

ABSTRACT

Cyanobacteria produce a variety of chemically diverse cyclic lipopeptides with potent antifungal activities. These cyclic lipopeptides have an amphipathic structure comprised of a polar peptide cycle and hydrophobic fatty acid side chain. Many have antibiotic activity against a range of human and plant fungal pathogens. This review article aims to summarize the present knowledge on the chemical diversity and cellular effects of cyanobacterial cyclic lipopeptides that display antifungal activity. Cyclic antifungal lipopeptides from cyanobacteria commonly fall into four structural classes; hassallidins, puwainaphycins, laxaphycins, and anabaenolysins. Many of these antifungal cyclic lipopeptides act through cholesterol and ergosterol-dependent disruption of membranes. In many cases, the cyclic lipopeptides also exert cytotoxicity in human cells, and a more extensive examination of their biological activity and structure-activity relationship is warranted. The hassallidin, puwainaphycin, laxaphycin, and anabaenolysin structural classes are unified through shared complex biosynthetic pathways that encode a variety of unusual lipoinitiation mechanisms and branched biosynthesis that promote their chemical diversity. However, the biosynthetic origins of some cyanobacterial cyclic lipopeptides and the mechanisms, which drive their structural diversification in general, remain poorly understood. The strong functional convergence of differently organized chemical structures suggests that the production of lipopeptide confers benefits for their producer. Whether these benefits originate from their antifungal activity or some other physiological function remains to be answered in the future. However, it is clear that cyanobacteria encode a wealth of new cyclic lipopeptides with novel biotechnological and therapeutic applications.


Subject(s)
Antifungal Agents , Cyanobacteria , Anti-Bacterial Agents , Antifungal Agents/pharmacology , Lipopeptides/pharmacology , Peptides, Cyclic/pharmacology
9.
Water Res ; 196: 117017, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33765498

ABSTRACT

Harmful cyanobacterial blooms, which frequently contain toxic secondary metabolites, are reported in aquatic environments around the world. More than two thousand cyanobacterial secondary metabolites have been reported from diverse sources over the past fifty years. A comprehensive, publically-accessible database detailing these secondary metabolites would facilitate research into their occurrence, functions and toxicological risks. To address this need we created CyanoMetDB, a highly curated, flat-file, openly-accessible database of cyanobacterial secondary metabolites collated from 850 peer-reviewed articles published between 1967 and 2020. CyanoMetDB contains 2010 cyanobacterial metabolites and 99 structurally related compounds. This has nearly doubled the number of entries with complete literature metadata and structural composition information compared to previously available open access databases. The dataset includes microcytsins, cyanopeptolins, other depsipeptides, anabaenopeptins, microginins, aeruginosins, cyclamides, cryptophycins, saxitoxins, spumigins, microviridins, and anatoxins among other metabolite classes. A comprehensive database dedicated to cyanobacterial secondary metabolites facilitates: (1) the detection and dereplication of known cyanobacterial toxins and secondary metabolites; (2) the identification of novel natural products from cyanobacteria; (3) research on biosynthesis of cyanobacterial secondary metabolites, including substructure searches; and (4) the investigation of their abundance, persistence, and toxicity in natural environments.


Subject(s)
Cyanobacteria , Depsipeptides
10.
Physiol Plant ; 173(2): 507-513, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33709388

ABSTRACT

NordAqua is a multidisciplinary Nordic Center of Excellence funded by NordForsk Bioeconomy program (2017-2022). The research center promotes Blue Bioeconomy and endeavours to reform the use of natural resources in a environmentally sustainable way. In this short communication, we summarize particular outcomes of the consortium. The key research progress of NordAqua includes (1) improving of photosynthetisis, (2) developing novel photosynthetic cell factories that function in a "solar-driven direct CO2 capture to target bioproducts" mode, (3) promoting the diversity of Nordic cyanobacteria and algae as an abundant and resilient alternative for less sustainable forest biomass and for innovative production of biochemicals, and (4) improving the bio-based wastewater purification and nutrient recycling technologies to provide new tools for integrative circular economy platforms.


Subject(s)
Photosynthesis , Biomass
11.
Front Ecol Evol, v. 9, 639852, jun. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3894

ABSTRACT

Cyanobacteria comprise one of the oldest and most diverse phyla in the Bacteria domain and are recognized for their importance in the biosphere evolution. Members of this phylum can be found in a wide variety of environments reflecting their photosynthetic ability, adaptability to various environmental conditions, and diversified metabolism. Such characteristics make cyanobacteria one of the preferred targets for research on bioactive compounds and new enzymes (Schirrmeister et al., 2011; Dittmann et al., 2015). Pantanalinema was described as a new genus of the Leptolyngbyaceae cyanobacterial family by a polyphasic approach, which included morphological characteristics, 16S rRNA gene phylogeny, 16S-23S ITS rRNA secondary structures, and physiological characteristics such as adaptability to pH variations (Vaz et al., 2015). This genus has been described only in Brazilian biomes such as the Pantanal and the Amazon, the first isolates being found in a lake. These Pantanalinema isolates were characterized by their ability to grow over a wide pH range (pH 4 to 11) as well as to modify the culture medium pH around neutrality (pH 6 to 7.4). Due to these characteristics, it is thought that this genus can occupy a variety of ecological niches, such as alkaline or slightly acidic water bodies (Vaz et al., 2015; Genuário et al., 2017). Taxonomic classification of Pantanalinema isolates requires the use of molecular markers as this genus is morphologically very similar to the recently described genus Amazoninema, which, in turn, has comparable morphology to other genera of the Leptolyngbyaceae family (Genuário et al., 2018). In this work, we report the genome sequence of a new Pantanalinema strain, named GBBB05, which was isolated from the Brazilian Cerrado biome. This is the first genome assembly for the Pantanalinema genus, which, along with the analyses provided here, is expected to enhance our understanding of this genus’s metabolic potential

12.
Front Microbiol ; 11: 578878, 2020.
Article in English | MEDLINE | ID: mdl-33042096

ABSTRACT

Cyanobacteria produce a wide range of lipopeptides that exhibit potent membrane-disrupting activities. Laxaphycins consist of two families of structurally distinct macrocyclic lipopeptides that act in a synergistic manner to produce antifungal and antiproliferative activities. Laxaphycins are produced by range of cyanobacteria but their biosynthetic origins remain unclear. Here, we identified the biosynthetic pathways responsible for the biosynthesis of the laxaphycins produced by Scytonema hofmannii PCC 7110. We show that these laxaphycins, called scytocyclamides, are produced by this cyanobacterium and are encoded in a single biosynthetic gene cluster with shared polyketide synthase enzymes initiating two distinct non-ribosomal peptide synthetase pathways. The unusual mechanism of shared enzymes synthesizing two distinct types of products may aid future research in identifying and expressing natural product biosynthetic pathways and in expanding the known biosynthetic logic of this important family of natural products.

13.
PeerJ ; 8: e9158, 2020.
Article in English | MEDLINE | ID: mdl-32518725

ABSTRACT

BACKGROUND: Brasilonema is a cyanobacterial genus found on the surface of mineral substrates and plants such as bromeliads, orchids and eucalyptus. B. octagenarum stands out among cyanobacteria due to causing damage to the leaves of its host in an interaction not yet observed in other cyanobacteria. Previous studies revealed that B. octagenaum UFV-E1 is capable of leading eucalyptus leaves to suffer internal tissue damage and necrosis by unknown mechanisms. This work aimed to investigate the effects of B. octagenarum UFV-E1 inoculation on Eucalyptus urograndis and to uncover molecular mechanisms potentially involved in leaf damage by these cyanobacteria using a comparative genomics approach. RESULTS: Leaves from E. urograndis saplings were exposed for 30 days to B. octagenarum UFV-E1, which was followed by the characterization of its genome and its comparison with the genomes of four other Brasilonema strains isolated from phyllosphere and the surface of mineral substrates. While UFV-E1 inoculation caused an increase in root and stem dry mass of the host plants, the sites colonized by cyanobacteria on leaves presented a significant decrease in pigmentation, showing that the cyanobacterial mats have an effect on leaf cell structure. Genomic analyses revealed that all evaluated Brasilonema genomes harbored genes encoding molecules possibly involved in plant-pathogen interactions, such as hydrolases targeting plant cell walls and proteins similar to known virulence factors from plant pathogens. However, sequences related to the type III secretory system and effectors were not detected, suggesting that, even if any virulence factors could be expressed in contact with their hosts, they would not have the structural means to actively reach plant cytoplasm. CONCLUSIONS: Leaf damage by this species is likely related to the blockage of access to sunlight by the efficient growth of cyanobacterial mats on the phyllosphere, which may hinder the photosynthetic machinery and prevent access to some essential molecules. These results reveal that the presence of cyanobacteria on leaf surfaces is not as universally beneficial as previously thought, since they may not merely provide the products of nitrogen fixation to their hosts in exchange for physical support, but in some cases also hinder regular leaf physiology leading to tissue damage.

14.
Toxins (Basel) ; 12(4)2020 04 11.
Article in English | MEDLINE | ID: mdl-32290496

ABSTRACT

Cyanobacteria produce an array of toxins that pose serious health risks to humans and animals. The closely related diazotrophic genera, Anabaena, Dolichospermum, and Aphanizomenon, frequently form poisonous blooms in lakes and brackish waters around the world. These genera form a complex now termed the Anabaena, Dolichospermum, and Aphanizomenon (ADA) clade and produce a greater array of toxins than any other cyanobacteria group. However, taxonomic confusion masks the distribution of toxin biosynthetic pathways in cyanobacteria. Here we obtained 11 new draft genomes to improve the understanding of toxin production in these genera. Comparison of secondary metabolite pathways in all available 31 genomes for these three genera suggests that the ability to produce microcystin, anatoxin-a, and saxitoxin is associated with specific subgroups. Each toxin gene cluster was concentrated or even limited to a certain subgroup within the ADA clade. Our results indicate that members of the ADA clade encode a variety of secondary metabolites following the phylogenetic clustering of constituent species. The newly sequenced members of the ADA clade show that phylogenetic separation of planktonic Dolichospermum and benthic Anabaena is not complete. This underscores the importance of taxonomic revision of Anabaena, Dolichospermum, and Aphanizomenon genera to reflect current phylogenomic understanding.


Subject(s)
Bacterial Toxins/genetics , Cyanobacteria/genetics , Marine Toxins/genetics , Phylogeny , Secondary Metabolism/genetics , Anabaena/genetics , Anabaena/metabolism , Aphanizomenon/genetics , Aphanizomenon/metabolism , Bacterial Toxins/metabolism , Cyanobacteria/classification , Cyanobacteria/metabolism , Gene Expression Regulation, Bacterial , Genome, Bacterial , Marine Toxins/metabolism , Multigene Family , Ribotyping , Species Specificity
15.
Toxins (Basel) ; 12(4)2020 03 26.
Article in English | MEDLINE | ID: mdl-32225013

ABSTRACT

Global warming, paired with eutrophication processes, is shifting phytoplankton communities towards the dominance of bloom-forming and potentially toxic cyanobacteria. The ecosystems of shallow lakes are especially vulnerable to these changes. Traditional monitoring via microscopy is not able to quantify the dynamics of toxin-producing cyanobacteria on a proper spatio-temporal scale. Molecular tools are highly sensitive and can be useful as an early warning tool for lake managers. We quantified the potential microcystin (MC) producers in Lake Peipsi using microscopy and quantitative polymerase chain reaction (qPCR) and analysed the relationship between the abundance of the mcyE genes, MC concentration, MC variants and toxin quota per mcyE gene. We also linked environmental factors to the cyanobacteria community composition. In Lake Peipsi, we found rather moderate MC concentrations, but microcystins and microcystin-producing cyanobacteria were widespread across the lake. Nitrate (NO3-) was a main driver behind the cyanobacterial community at the beginning of the growing season, while in late summer it was primarily associated with the soluble reactive phosphorus (SRP) concentration. A positive relationship was found between the MC quota per mcyE gene and water temperature. The most abundant variant-MC-RR-was associated with MC quota per mcyE gene, while other MC variants did not show any significant impact.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/genetics , Environmental Monitoring , Gene Dosage , Harmful Algal Bloom , Lakes/microbiology , Microcystins/genetics , Peptide Synthases/metabolism , Water Microbiology , Bacterial Proteins/genetics , Chromatography, High Pressure Liquid , Cyanobacteria/growth & development , Cyanobacteria/metabolism , Gene Expression Regulation, Bacterial , Genetic Markers , Microcystins/metabolism , Nitrates/metabolism , Peptide Synthases/genetics , Phosphorus/metabolism , Polymerase Chain Reaction , Ribotyping , Spectrometry, Mass, Electrospray Ionization , Temperature
16.
Toxins (Basel) ; 12(3)2020 02 25.
Article in English | MEDLINE | ID: mdl-32106513

ABSTRACT

The bloom-forming cyanobacterium Nodularia spumigena CENA596 encodes the biosynthetic gene clusters (BGCs) of the known natural products nodularins, spumigins, anabaenopeptins/namalides, aeruginosins, mycosporin-like amino acids, and scytonemin, along with the terpenoid geosmin. Targeted metabolomics confirmed the production of these metabolic compounds, except for the alkaloid scytonemin. Genome mining of N. spumigena CENA596 and its three closely related Nodularia strains-two planktonic strains from the Baltic Sea and one benthic strain from Japanese marine sediment-revealed that the number of BGCs in planktonic strains was higher than in benthic one. Geosmin-a volatile compound with unpleasant taste and odor-was unique to the Brazilian strain CENA596. Automatic annotation of the genomes using subsystems technology revealed a related number of coding sequences and functional roles. Orthologs from the Nodularia genomes are involved in the primary and secondary metabolisms. Phylogenomic analysis of N. spumigena CENA596 based on 120 conserved protein sequences positioned this strain close to the Baltic Nodularia. Phylogeny of the 16S rRNA genes separated the Brazilian CENA596 strain from those of the Baltic Sea, despite their high sequence identities (99% identity, 100% coverage). The comparative analysis among planktic Nodularia strains showed that their genomes were considerably similar despite their geographically distant origin.


Subject(s)
Biological Products/analysis , Nodularia/genetics , Nodularia/metabolism , Animals , Aquaculture , Genome, Bacterial , Genomics , Metabolomics , Penaeidae , Phylogeny , Ponds
17.
Toxins (Basel) ; 12(1)2019 12 24.
Article in English | MEDLINE | ID: mdl-31878347

ABSTRACT

Cyanobacteria are photosynthetic organisms that produce a large diversity of natural products with interesting bioactivities for biotechnological and pharmaceutical applications. Cyanobacterial extracts exhibit toxicity towards other microorganisms and cancer cells and, therefore, represent a source of potentially novel natural products for drug discovery. We tested 62 cyanobacterial strains isolated from various Brazilian biomes for antileukemic and antimicrobial activities. Extracts from 39 strains induced selective apoptosis in acute myeloid leukemia (AML) cancer cell lines. Five of these extracts also exhibited antifungal and antibacterial activities. Chemical and dereplication analyses revealed the production of nine known natural products. Natural products possibly responsible for the observed bioactivities and five unknown, chemically related chlorinated compounds present only in Brazilian cyanobacteria were illustrated in a molecular network. Our results provide new information on the vast biosynthetic potential of cyanobacteria isolated from Brazilian environments.


Subject(s)
Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Cyanobacteria/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/isolation & purification , Antifungal Agents/pharmacology , Antineoplastic Agents/isolation & purification , Biological Products/chemistry , Brazil , Cell Line, Tumor , Cyanobacteria/classification , Cyanobacteria/genetics , Drug Discovery , Drug Screening Assays, Antitumor , Gene Regulatory Networks , Humans , Leukemia, Myeloid, Acute/drug therapy , Microbial Sensitivity Tests
18.
Proc Natl Acad Sci U S A ; 116(52): 26909-26917, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31811021

ABSTRACT

Medicinal plants are a prolific source of natural products with remarkable chemical and biological properties, many of which have considerable remedial benefits. Numerous medicinal plants are suffering from wildcrafting, and thus biotechnological production processes of their natural products are urgently needed. The plant Aster tataricus is widely used in traditional Chinese medicine and contains unique active ingredients named astins. These are macrocyclic peptides showing promising antitumor activities and usually containing the highly unusual moiety 3,4-dichloroproline. The biosynthetic origins of astins are unknown despite being studied for decades. Here we show that astins are produced by the recently discovered fungal endophyte Cyanodermella asteris. We were able to produce astins in reasonable and reproducible amounts using axenic cultures of the endophyte. We identified the biosynthetic gene cluster responsible for astin biosynthesis in the genome of C. asteris and propose a production pathway that is based on a nonribosomal peptide synthetase. Striking differences in the production profiles of endophyte and host plant imply a symbiotic cross-species biosynthesis pathway for astin C derivatives, in which plant enzymes or plant signals are required to trigger the synthesis of plant-exclusive variants such as astin A. Our findings lay the foundation for the sustainable biotechnological production of astins independent from aster plants.

19.
ACS Chem Biol ; 14(12): 2683-2690, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31674754

ABSTRACT

Prenylation is a common step in the biosynthesis of many natural products and plays an important role in increasing their structural diversity and enhancing biological activity. Muscoride A is a linear peptide alkaloid that contain two contiguous oxazoles and unusual prenyl groups that protect the amino- and carboxy-termini. Here we identified the 12.7 kb muscoride (mus) biosynthetic gene clusters from Nostoc spp. PCC 7906 and UHCC 0398. The mus biosynthetic gene clusters encode enzymes for the heterocyclization, oxidation, and prenylation of the MusE precursor protein. The mus biosynthetic gene clusters encode two copies of the cyanobactin prenyltransferase, MusF1 and MusF2. The predicted tetrapeptide substrate of MusF1 and MusF2 was synthesized through a novel tandem cyclization route in only eight steps. Biochemical assays demonstrated that MusF1 acts on the carboxy-terminus while MusF2 acts on the amino-terminus of the tetrapeptide substrate. We show that the MusF2 enzyme catalyzes the reverse or forward prenylation of amino-termini from Nostoc spp. PCC 7906 and UHCC 0398, respectively. This finding expands the regiospecific chemical functionality of cyanobactin prenyltransferases and the chemical diversity of the cyanobactin family of natural products to include bis-prenylated polyoxazole linear peptides.


Subject(s)
Oxazoles/metabolism , Pyrrolidines/metabolism , Biosynthetic Pathways/genetics , Dimethylallyltranstransferase/genetics , Dimethylallyltranstransferase/metabolism , Multigene Family , Peptides, Cyclic/metabolism , Prenylation
20.
FEMS Microbiol Ecol ; 95(9)2019 09 01.
Article in English | MEDLINE | ID: mdl-31397876

ABSTRACT

Heterotrophic bacteria are important drivers of nitrogen (N) cycling and the processing of dissolved organic matter (DOM). Projected increases in precipitation will potentially cause increased loads of riverine DOM to the Baltic Sea and likely affect the composition and function of bacterioplankton communities. To investigate this, the effects of riverine DOM from two different catchment areas (agricultural and forest) on natural bacterioplankton assemblages from two contrasting sites in the Baltic Sea were examined. Two microcosm experiments were carried out, where the community composition (16S rRNA gene sequencing), the composition of a suite of N-cycling genes (metagenomics) and the abundance and transcription of ammonia monooxygenase (amoA) genes involved in nitrification (quantitative PCR) were investigated. The river water treatments evoked a significant response in bacterial growth, but the effects on overall community composition and the representation of N-cycling genes were limited. Instead, treatment effects were reflected in the prevalence of specific taxonomic families, specific N-related functions and in the transcription of amoA genes. The study suggests that bacterioplankton responses to changes in the DOM pool are constrained to part of the bacterial community, whereas most taxa remain relatively unaffected.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/genetics , Microbiota , Nitrogen/metabolism , Rivers/microbiology , Seawater/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/metabolism , Baltic States , Estuaries , Heterotrophic Processes , Nitrification , Nitrogen/analysis , Rivers/chemistry , Seawater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...