Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(6): 6235-6252, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38371794

ABSTRACT

Nanomedicine has been essential in bioimaging and cancer therapy in recent years. Nanoscale covalent-organic frameworks (COFs) have been growing as an adequate classification of biomedical nanomaterials with practical application prospects because of their increased porosity, functionality, and biocompatibility. The high sponginess of COFs enables the incorporation of distinct imaging and therapeutic mechanisms with a better loading efficiency. Nevertheless, preliminary biocompatibility limits their possibility for clinical translation. Thus, cutting-edge nanomaterials with high biocompatibility and improved therapeutic efficiency are highly expected to fast-track the clinical translation of nanomedicines. The inherent effects of nanoscale COFs, such as proper size, modular pore geometry and porosity, and specific postsynthetic transformation through simple organic changes, make them particularly appealing for prospective nanomedicines. The organic building blocks of COFs may also be postmodified for particular binding to biomarkers. The exceptional features of COFs cause them to be an encouraging nanocarrier for bioimaging and therapeutic applications. In this review, we have systematically discussed the advances of COFs in the field of theranostics by providing essential features of COFs along with their synthetic methods. Further, the applications of COFs in the field of theranostics (such as drug delivery systems, photothermal, and photodynamic therapy) are discussed in detail with the help of available literature to date. Furthermore, the advantages of COFs over other materials for therapeutics and drug delivery are discussed. Finally, the review concludes with potential future COF applications in the theranostic field.

2.
Sci Total Environ ; 887: 164006, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37172858

ABSTRACT

In the fast-developing time, the accumulation of waste materials is always in an uptrend due to population increases and industrialization. This excessive accumulation in waste materials harms the ecosystem and human beings by depleting water quality, air quality, and biodiversity. Further, by use of fossil fuel problem-related global warming, greenhouse gases are the major challenge in front of the world. Nowadays, scientists and researchers are more focused on recycling and utilizing different waste materials like a municipal solid waste (MSW), agro-industrial waste etc. The waste materials added to the environment are converted into valuable products or green chemicals using green chemistry principles. These fields are the production of energy, synthesis of biofertilizers and use in the textile industry to fulfil the need of the present world. Here we need more focus on the circular economy considering the value of products in the bioeconomic market. For this purpose, sustainable development of the circular bio-economy is the most promising alternative, which is possible by incorporating the latest techniques like microwave-based extraction, enzyme immobilization-based removal, bioreactor-based removal etc., for the valorization of food waste materials. Further, the conversion of organic waste into valuable products like biofertilizers and vermicomposting is also realised by using earthworms. The present review article focuses on the various types of waste materials (such as MSW, agricultural, industrial, household waste, etc.), waste management with current glitches and the expected solutions that have been discussed. Furthermore, we have highlighted their safe conversion into green chemicals and contribution to the bioeconomic market. The role of the circular economy is also discussed.


Subject(s)
Refuse Disposal , Waste Management , Humans , Ecosystem , Food , Solid Waste , Biofuels
3.
Indian J Microbiol ; 63(1): 73-83, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37188239

ABSTRACT

Bacterial infection is a major crisis of 21st era and the emergence of multidrug resistant (MDR) pathogens cause significant health problems. We developed, green chemistry-based silver nanoparticles (G-Ag NPs) using Citrus pseudolimon fruit peel extract. G-Ag NPs has a spherical shape in the range of ~ 40 nm with a surface charge of - 31 Mv. This nano-bioagent is an eco-friendly tool to combat menace of MDR. Biochemical tests prove that G-Ag NPs are compatible with human red blood cells and peripheral blood mononuclear cells. There have been many reports on the synthesis of silver nanoparticles, but this study suggests a green technique for making non-cytotoxic, non-hemolytic organometallic silver nanoparticles with a high therapeutic index for possible use in the medical field. On the same line, G-Ag NPs are very effective against Mycobacterium sp. and MDR strains including Escherichia coli, Klebsiella species, Pseudomonas aeruginosa, and Acinetobacter baumannii isolated from patient samples. Based on it, we filed a patent to Indian Patent Office (reference no. 202111048797) which can revolutionize the prevention of biomedical device borne infections in hospital pre/post-operated cases. This work could be further explored in future by in vivo experimentation with mice model to direct its possible clinical utility. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01061-0.

4.
ACS Nanosci Au ; 3(1): 1-27, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-37101467

ABSTRACT

A prominent neurotransmitter (NT), dopamine (DA), is a chemical messenger that transmits signals between one neuron to the next to pass on a signal to and from the central nervous system (CNS). The imbalanced concentration of DA may cause numerous neurological sicknesses and syndromes, for example, Parkinson's disease (PD) and schizophrenia. There are many types of NTs in the brain, including epinephrine, norepinephrine (NE), serotonin, and glutamate. Electrochemical sensors have offered a creative direction to biomedical analysis and testing. Researches are in progress to improve the performance of sensors and develop new protocols for sensor design. This review article focuses on the area of sensor growth to discover the applicability of polymers and metallic particles and composite materials as tools in electrochemical sensor surface incorporation. Electrochemical sensors have attracted the attention of researchers as they possess high sensitivity, quick reaction rate, good controllability, and instantaneous detection. Efficient complex materials provide considerable benefits for biological detection as they have exclusive chemical and physical properties. Due to distinctive electrocatalytic characteristics, metallic nanoparticles add fascinating traits to materials that depend on the material's morphology and size. Herein, we have collected much information on NTs and their importance within the physiological system. Furthermore, the electrochemical sensors and corresponding techniques (such as voltammetric, amperometry, impedance, and chronoamperometry) and the different types of electrodes' roles in the analysis of NTs are discussed. Furthermore, other methods for detecting NTs include optical and microdialysis methods. Finally, we show the advantages and disadvantages of different techniques and conclude remarks with future perspectives.

5.
Biotechnol Adv ; 66: 108149, 2023 09.
Article in English | MEDLINE | ID: mdl-37030554

ABSTRACT

Glycosylation-mediated post-translational modification is critical for regulating many fundamental processes like cell division, differentiation, immune response, and cell-to-cell interaction. Alterations in the N-linked or O-linked glycosylation pattern of regulatory proteins like transcription factors or cellular receptors lead to many diseases, including cancer. These alterations give rise to micro- and macro-heterogeneity in tumor cells. Here, we review the role of O- and N-linked glycosylation and its regulatory function in autoimmunity and aberrant glycosylation in cancer. The change in cellular glycome could result from a change in the expression of glycosidases or glycosyltransferases like N-acetyl-glucosaminyl transferase V, FUT8, ST6Gal-I, DPAGT1, etc., impact the glycosylation of target proteins leading to transformation. Moreover, the mutations in glycogenes affect glycosylation patterns on immune cells leading to other related manifestations like pro- or anti-inflammatory effects. In recent years, understanding the glycome to cancer indicates that it can be utilized for both diagnosis/prognosis as well as immunotherapy. Studies involving mass spectrometry of proteome, site- and structure-specific glycoproteomics, or transcriptomics/genomics of patient samples and cancer models revealed the importance of glycosylation homeostasis in cancer biology. The development of emerging technologies, such as the lectin microarray, has facilitated research on the structure and function of glycans and glycosylation. Newly developed devices allow for high-throughput, high-speed, and precise research on aberrant glycosylation. This paper also discusses emerging technologies and clinical applications of glycosylation.


Subject(s)
Neoplasms , Humans , Glycosylation , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Glycosyltransferases/metabolism , Lectins/metabolism , Immunotherapy , Polysaccharides/chemistry
6.
ACS Omega ; 8(10): 9004-9030, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36936323

ABSTRACT

In previous years, different pollutants, for example, organic dyes, antibiotics, heavy metals, pharmaceuticals, and agricultural pollutants, have been of note to the water enterprise due to their insufficient reduction during standard water and wastewater processing methods. MOFs have been found to have potential toward wastewater management. This Review focused on the synthesis process (such as traditional, electrochemical, microwave, sonochemical, mechanochemical, and continuous-flow spray-drying method) of MOF materials. Moreover, the properties of the MOF materials have been discussed in detail. Further, MOF materials' applications for wastewater treatment (such as the removal of antibiotics, organic dyes, heavy metal ions, and agricultural waste) have been discussed. Additionally, we have compared the performances of some typical MOFs-based materials with those of other commonly used materials. Finally, the study's current challenges, future prospects, and outlook have been highlighted.

7.
ACS Eng Au ; 2(5): 378-396, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36281334

ABSTRACT

Air pollution is a central problem faced by industries during the production process. The control of this pollution is essential for the environment and living organisms as it creates harmful effects. Biofiltration is a current pollution management strategy that concerns removing odor, volatile organic compounds (VOCs), and other pollutants from the air. Recently, this approach has earned vogue globally due to its low-cost and straightforward technique, effortless function, high reduction efficacy, less energy necessity, and residual consequences not needing additional remedy. There is a critical requirement to consider sustainable machinery to decrease the pollutants arising within air and water sources. For managing these different kinds of pollutant reductions, biofiltration techniques have been utilized. The contaminants are adsorbed upon the medium exterior and are metabolized to benign outcomes through immobilized microbes. Biofiltration-based designs have appeared advantageous in terminating dangerous pollutants from wastewater or contaminated air in recent years. Biofiltration uses the possibilities of microbial approaches (bacteria and fungi) to lessen the broad range of compounds and VOCs. In this review, we have discussed a general introduction based on biofiltration and the classification of air pollutants based on different sources. The history of biofiltration and other mechanisms used in biofiltration techniques have been discussed. Further, the crucial factors of biofilters that affect the performance of biofiltration techniques have been discussed in detail. Finally, we concluded the topic with current challenges and future prospects.

8.
Adv Sci (Weinh) ; 9(26): e2202187, 2022 09.
Article in English | MEDLINE | ID: mdl-35853696

ABSTRACT

Current interest toward ionic liquids (ILs) stems from some of their novel characteristics, like low vapor pressure, thermal stability, and nonflammability, integrated through high ionic conductivity and broad range of electrochemical strength. Nowadays, ionic liquids represent a new category of chemical-based compounds for developing superior and multifunctional substances with potential in several fields. ILs can be used in solvents such as salt electrolyte and additional materials. By adding functional physiochemical characteristics, a variety of IL-based electrolytes can also be used for energy storage purposes. It is hoped that the present review will supply guidance for future research focused on IL-based polymer nanocomposites electrolytes for sensors, high performance, biomedicine, and environmental applications. Additionally, a comprehensive overview about the polymer-based composites' ILs components, including a classification of the types of polymer matrix available is provided in this review. More focus is placed upon ILs-based polymeric nanocomposites used in multiple applications such as electrochemical biosensors, energy-related materials, biomedicine, actuators, environmental, and the aviation and aerospace industries. At last, existing challenges and prospects in this field are discussed and concluding remarks are provided.


Subject(s)
Ionic Liquids , Nanocomposites , Electrolytes/chemistry , Ionic Liquids/chemistry , Polymers/chemistry , Solvents/chemistry
9.
Chemosphere ; 304: 135182, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35667504

ABSTRACT

Foodborne-related infections due to additives and pollutants pose a considerable task for food processing enterprises. Therefore, the competent, cost-effective, and quick investigation of nutrition additives and contaminants is essential to reduce the threat of public fitness problems. The electrochemical sensor (ECS) shows facile and potent analytical approaches desirable for food protection and quality inspection over traditional methods. The consequence of a broad display of nanomaterials has paved the path for their relevance in designing high-performance ECSs appliances for medical diagnostics and conditions and food protection. This review article has discussed the importance of electrochemical-based sensors amplified with carbon-based nanomaterials (CNMs). Initially, we have demonstrated the types of pharmaceutical and food/agriculture pollutants (such as pesticides, heavy metals, antibiotics and other medical drugs) present in water. Subsequently, we have compiled the information on electrochemical techniques (such as voltammetric and electrochemical impedance spectroscopy) and their crucial parameters for detecting pollutants. Further, the applications of CNMs for sensing pharmaceutical and food pollutants have been demonstrated in detail. Finally, the topic has been concluded with existing challenges and future prospects.


Subject(s)
Environmental Pollutants , Nanostructures , Carbon/chemistry , Electrochemical Techniques/methods , Nanostructures/chemistry , Pharmaceutical Preparations
10.
Int J Food Microbiol ; 371: 109666, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35397315

ABSTRACT

Current modern dietary patterns throughout the world have resulted in adverse health implications. On the other hand, current agricultural practices and methods employed in food industries lead to the exploitation of the environment and generate nutrient-rich waste, which is underutilized. The simple answer to both these problems could be the adoption of fermentation technology. Due to the presence of functional microorganisms, fermented foods possess unique properties like probiotics properties, antimicrobial, antioxidant, peptide production, etc., imparting health benefits to consumers. Moreover, agricultural and food processing waste fermentation could generate value-added healthy foods and sustainable food sources. Not only this, fermented food products can be an essential source of generating livelihoods by producing necessary food ingredients through fermentation of commonly generated organic wastes in rural areas and encouraging and promoting traditional fermented recipes that are also healthy. This review discusses how reviving and promoting food fermentation technology can help reduce these two problems related to health and sustainability. Furthermore, the role of lactic acid bacteria and fungi like yeast, Penicillium, Acetobacter etc., in producing beneficial metabolites and their impact on controlling various lifestyle disorders and aging have been discussed. In addition, fermented foods also enrich gut microbiota, which imparts health benefits.


Subject(s)
Fermented Foods , Probiotics , Diet , Fermentation , Food Microbiology , Public Health
11.
Chemosphere ; 299: 134364, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35318024

ABSTRACT

Carbon-based nanomaterials (CBNMs) have attracted significant alert due to the affluent science underpinning their implementations associated with a novel mixture of high aspect proportions, greater thermal and electrical performance, outstanding optical features, and high exterior area. CBNMs not only bear assurance in a broad range of implementations in medication, nano and microelectronics, and ecological remedies but may also be utilized in practical laboratory determinations. More specifically, CBNMs perform as an outstanding adsorbent in terminating heavy metal ions (HMI) from wastewater. There is presently a deficiency of powerful threat inspection instruments owing to their complex detection and related deficit in the health risk database. Therefore, our present review concentrates on spreading CBNMs to release pollutants from wastewater. The article wraps the effect of these contaminants and photocatalytic strategies towards treating these mixtures in wastewater, along with their restrictions and challenges, convincing resolutions, and possibilities of these approaches.


Subject(s)
Environmental Pollutants , Nanostructures , Water Pollutants, Chemical , Adsorption , Carbon , Wastewater , Water Pollutants, Chemical/analysis
12.
Materials (Basel) ; 15(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35207848

ABSTRACT

A viable electrochemical approach for the detection of dopamine (DA) in uric acid (UA) utilizing a silver nanoparticle-doped 2-aminodiphenylamine (AgNPs-2ADPA) electrode was invented. The electrochemical performance of DA showed that the incorporated electrode displayed outstanding electrocatalytic performance to the electrochemical oxidation of DA. In our study, the AgNPs-2ADPA exhibits remarkable catalytic activity, retaining high current value and resilience when employed as a working electrode component for electrocatalytic detection of DA. We have also utilized the bare and polymeric-2ADPA in DA detection for a comparison study. This method offers a facile route with extraordinary sensitivity, selectivity, and strength for the voltammetric detection of DA, even in the presence of UA and ascorbic acid (AA) as interferents, that can be employed for pharmaceutical and biological specimens.

13.
Chemosphere ; 293: 133542, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34999104

ABSTRACT

MXenes are a quickly growing and extended group of two-dimensional (2D) substances that have earned unbelievable analysis credits for various application areas within different manufacturing areas. Due to novel essential architectural and physicochemical properties shows good properties, such as elevated exterior area, living adaptability, strong electrochemistry, and great hydrophilicity. Given the fast progress within the structure and synthesis of MBNs for water treatment, quick updates on this research field are required to remove toxic substances, such as production approaches and characterization methods for the advantages and constraints of MXenes for pollutant degradation. MXenes are determined as a proposed road toward atmosphere-clean-up machinery to identify and decrease a pattern of hazardous resistant pollutants from environmental forms. Here, in this review article, we have been focused on describing the overview, novel synthesis methods, and characteristics of the MXene-based nanomaterials (MBNs) in the field for removing hazardous contaminants from environmental conditions. In the last, the utilizations of MBNs in water sanitization, organic solvent filtration, antibiotics degradation, pesticide degradation, heavy metals degradation, ions removal, bacterial pathogens degradation, along with the conclusion, challenges, and prospects in this field, have been discussed.


Subject(s)
Environmental Pollutants , Metals, Heavy , Nanostructures , Pesticides , Water Purification
14.
J Funct Biomater ; 12(4)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34940546

ABSTRACT

To match the current life-style, there is a huge demand and market for the processed food whose manufacturing requires multiple steps. The mounting demand increases the pressure on the producers and the regulatory bodies to provide sensitive, facile, and cost-effective methods to safeguard consumers' health. In the multistep process of food processing, there are several chances that the food-spoiling microbes or contaminants could enter the supply chain. In this contest, there is a dire necessity to comprehend, implement, and monitor the levels of contaminants by utilizing various available methods, such as single-cell droplet microfluidic system, DNA biosensor, nanobiosensor, smartphone-based biosensor, aptasensor, and DNA microarray-based methods. The current review focuses on the advancements in these methods for the detection of food-borne contaminants and pathogens.

15.
J Environ Chem Eng ; 9(5): 106284, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34485055

ABSTRACT

The COVID-19 pandemic has intensified the complications of plastic trash management and disposal. The current situation of living in fear of transmission of the COVID-19 virus has further transformed our behavioural models, such as regularly using personal protective equipment (PPE) kits and single-use applications for day to day needs etc. It has been estimated that with the passage of the coronavirus epidemic every month, there is expected use of 200 billion pieces of single-use facemasks and gloves. PPE are well established now as life-saving items for medicinal specialists to stay safe through the COVID-19 pandemic. Different processes such as glycolysis, hydrogenation, aminolysis, hydrolysis, pyrolysis, and gasification are now working on finding advanced technologies to transfer waste PPE into value-added products. Here, in this article, we have discussed the recycling strategies of PPE, important components (such as medical gloves, gowns, masks & respirators and other face and eye protection) and the raw materials used in PPE kits. Further, the value addition methods to recycling the PPE kits, chemical & apparatus used in recycling and recycling components into value-added products. Finally, the biorenewable materials in PPE for textiles components have been discussed along with concluded remarks.

16.
J Colloid Interface Sci ; 571: 1-12, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32182494

ABSTRACT

Silver nanoparticles (NPs) developed on a copper substrate, Ag NPs/Cu, are synthesized by a novel and facile galvanic replacement method performed in Ethaline deep eutectic solvent (DES). It reveals that the Ag NPs could be well dispersed on the Cu support via an in-situ electrochemical oxidation-reduction (ECO-ECR) activation process, which deliver significantly enhanced activity and stability for the oxygen reduction reaction (ORR) in alkaline media. The in-situ redox tuning triggers a reversible phase transformation of the formed initially Ag NPs, Ag â†” Ag2O, with surface reconstruction and gives rise to a strong metal-support interaction with tailored atomic/electronic structures, resulting in enhanced ORR activity. Impressively, the introduction of NiII ions can regulate the galvanic replacement kinetics by mediating the diffusion of AgI ions and subsequent growth of Ag on the Cu surface in Ethaline, leading to the formation of uniformly distributed Ag NPs. Coupled with redox activation, the optimal Ag-Ni1 NPs/Cu_ECO-ECR exhibits ORR activity similar to that of the commercial state-of-the-art Pt/C catalyst, and better long-term durability (95% activity retention after 30,000 s), cyclic stability performance, and anti-poisoning capacity for methanol (96% after 3300 s), suggesting it a promising ORR electrocatalyst for practical application.

17.
Polymers (Basel) ; 12(3)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32110927

ABSTRACT

In recent years, numerous discoveries and investigations have been remarked for the development of carbon-based polymer nanocomposites. Carbon-based materials and their composites hold encouraging employment in a broad array of fields, for example, energy storage devices, fuel cells, membranes sensors, actuators, and electromagnetic shielding. Carbon and its derivatives exhibit some remarkable features such as high conductivity, high surface area, excellent chemical endurance, and good mechanical durability. On the other hand, characteristics such as docility, lower price, and high environmental resistance are some of the unique properties of conducting polymers (CPs). To enhance the properties and performance, polymeric electrode materials can be modified suitably by metal oxides and carbon materials resulting in a composite that helps in the collection and accumulation of charges due to large surface area. The carbon-polymer nanocomposites assist in overcoming the difficulties arising in achieving the high performance of polymeric compounds and deliver high-performance composites that can be used in electrochemical energy storage devices. Carbon-based polymer nanocomposites have both advantages and disadvantages, so in this review, attempts are made to understand their synergistic behavior and resulting performance. The three electrochemical energy storage systems and the type of electrode materials used for them have been studied here in this article and some aspects for example morphology, exterior area, temperature, and approaches have been observed to influence the activity of electrochemical methods. This review article evaluates and compiles reported data to present a significant and extensive summary of the state of the art.

18.
Bioresour Technol ; 297: 122481, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31796379

ABSTRACT

The transformation of biomass using steam gasification is a chemical route to facilitate changes in organic or residue supported carbonaceous substances addicted to carbon mono-oxide, hydrogen including carbon-di-oxide, etc. However, to commercialize the method of steam gasification, the hurdles persist during the gasification as well as downstream processing. This article delivers a summary of the different approaches that are described in the previous studies to achieve H2 refinement and adaptation within the gasifier system. These include advanced aspects in the research and development of biomass gasification (alike advancements under the gasification operation). The upshot of diverse operating conditions like steam flow rate, operating temperature, moisture content, gasifier agents, residence time, biomass to air, steam to biomass, equivalence ratio, etc. towards the execution of biomass gasifier. This review accomplishes that the interdependence of several issues must be considered in point to optimise the producer gas.


Subject(s)
Hydrogen , Steam , Biomass , Carbon , Temperature
19.
Nanomaterials (Basel) ; 10(1)2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31861281

ABSTRACT

Here, we report the synthesis of copper-manganese alloy (CuMnO2) using graphitic carbon nitride (gCN) as a novel support material. The successful formation of CuMnO2-gCN was confirmed through spectroscopic, optical, and other characterization techniques. We have applied this catalyst as the energy storage material in the alkaline media and it has shown good catalytic behavior in supercapacitor applications. The CuMnO2-gCN demonstrates outstanding electrocapacitive performance, having high capacitance (817.85 A·g-1) and well-cycling stability (1000 cycles) when used as a working electrode material for supercapacitor applications. For comparison, we have also used the gCN and Cu2O-gCN for supercapacitor applications. This study proposes a simple path for the extensive construction of self-attaining double metal alloy with control size and uniformity in high-performance energy-storing materials.

20.
Small ; 15(11): e1804722, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30735296

ABSTRACT

Herein, well-defined Pd nanoparticles (NPs) developed on Ni substrate (Pd NPs/Ni) are synthesized via a facile galvanic replacement reaction (GRR) route performed in ethaline-based deep eutectic solvent (DES). For comparison, a Pd NPs/Ni composite is also prepared by the GRR method conducted in an aqueous solution. The Pd NPs/Ni obtained from the ethaline-DES is catalytically more active and durable for the methanol electro-oxidation reaction (MOR) than those of the counterpart derived from conventional aqueous solution and commercial Pd/C under alkaline media. Detailed kinetic analysis indicates that the unique solvent environment offered by ethaline plays vital roles in adjusting the reactivity of the active species and their mass transport properties to control over the genesis of the Pd NPs/Ni nanocomposite. The resulting Pd NPs/Ni catalyst possesses a homogeneous dispersion of Pd NPs with a strong Pd (metal)-Ni (support) interaction. This structure enhances the charge transfer between the support and the active phases, and optimizes the adsorption energy of OH- and CO on the surface, leading to superior electrocatalytic performance. This work provides a novel GRR strategy performed in ethaline-DES to the rational design and construction of advanced metal/support catalysts with strong interaction for improving the activity and durability for MOR.

SELECTION OF CITATIONS
SEARCH DETAIL
...