Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Elife ; 122024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358795

ABSTRACT

Many cellular processes are regulated by ubiquitin-mediated proteasomal degradation. Pathogens can regulate eukaryotic proteolysis through the delivery of proteins with de-ubiquitinating (DUB) activities. The obligate intracellular pathogen Chlamydia trachomatis secretes Cdu1 (ChlaDUB1), a dual deubiquitinase and Lys-acetyltransferase, that promotes Golgi remodeling and survival of infected host cells presumably by regulating the ubiquitination of host and bacterial proteins. Here, we determined that Cdu1's acetylase but not its DUB activity is important to protect Cdu1 from ubiquitin-mediated degradation. We further identified three C. trachomatis proteins on the pathogen-containing vacuole (InaC, IpaM, and CTL0480) that required Cdu1's acetylase activity for protection from degradation and determined that Cdu1 and these Cdu1-protected proteins are required for optimal egress of Chlamydia from host cells. These findings highlight a non-canonical mechanism of pathogen-mediated protection of virulence factors from degradation after their delivery into host cells and the coordinated regulation of secreted effector proteins.


Subject(s)
Acetylesterase , Mitochondrial Membranes , Chlamydia trachomatis , Bacterial Proteins/genetics , Ubiquitin
2.
mBio ; 14(4): e0319022, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37530528

ABSTRACT

The obligate intracellular bacterium Chlamydia trachomatis inserts a family of inclusion membrane (Inc) proteins into the membrane of its vacuole (the inclusion). The Inc CpoS is a critical suppressor of host cellular immune surveillance, but the underlying mechanism remained elusive. By complementing a cpoS mutant with various natural orthologs and variants of CpoS, we linked distinct molecular interactions of CpoS to distinct functions. Unexpectedly, we found CpoS to be essential for the formation of inclusion membrane microdomains that control the spatial organization of multiple Incs involved in signaling and modulation of the host cellular cytoskeleton. While the function of CpoS in microdomains was uncoupled from its role in the suppression of host cellular defenses, we found the ability of CpoS to interact with Rab GTPases to be required not only for the manipulation of membrane trafficking, such as to mediate transport of ceramide-derived lipids (sphingolipids) to the inclusion, but also for the inhibition of Stimulator of interferon genes (STING)-dependent type I interferon responses. Indeed, depletion of Rab35 phenocopied the exacerbated interferon responses observed during infection with CpoS-deficient mutants. Overall, our findings highlight the role of Inc-Inc interactions in shaping the inclusion microenvironment and the modulation of membrane trafficking as a pathogenic immune evasion strategy. IMPORTANCE Chlamydia trachomatis is a prevalent bacterial pathogen that causes blinding ocular scarring and urogenital infections that can lead to infertility and pregnancy complications. Because Chlamydia can only grow within its host cell, boosting the intrinsic defenses of human cells may represent a novel strategy to fight pathogen replication and survival. Hence, CpoS, a Chlamydia protein known to block host cellular defenses, or processes regulated by CpoS, could provide new opportunities for therapeutic intervention. By revealing CpoS as a multifunctional virulence factor and by linking its ability to block host cellular immune signaling to the modulation of membrane trafficking, the present work may provide a foundation for such rationale targeting and advances our understanding of how intracellular bacteria can shape and protect their growth niche.


Subject(s)
Chlamydia Infections , Interferon Type I , Humans , Bacterial Proteins/metabolism , Chlamydia trachomatis/genetics , Chlamydia Infections/microbiology , Immune Evasion , Interferon Type I/metabolism , HeLa Cells , Host-Pathogen Interactions
3.
bioRxiv ; 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-36909574

ABSTRACT

Many cellular processes are regulated by ubiquitin-mediated proteasomal degradation. Pathogens can regulate eukaryotic proteolysis through the delivery of proteins with de-ubiquitinating (DUB) activities. The obligate intracellular pathogen Chlamydia trachomatis secretes Cdu1 (ChlaDUB1), a dual deubiquitinase and Lys-acetyltransferase, that promotes Golgi remodeling and survival of infected host cells presumably by regulating the ubiquitination of host and bacterial proteins. Here we determined that Cdu1's acetylase but not its DUB activity is important to protect Cdu1 from ubiquitin-mediated degradation. We further identified three C. trachomatis proteins on the pathogen-containing vacuole (InaC, IpaM, and CTL0480) that required Cdu1's acetylase activity for protection from degradation and determined that Cdu1 and these Cdu1-protected proteins are required for optimal egress of Chlamydia from host cells. These findings highlight a non-canonical mechanism of pathogen-mediated protection of virulence factors from degradation after their delivery into host cells and the coordinated regulation of secreted effector proteins.

5.
Cell Host Microbe ; 30(4): 475-479, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35421347

ABSTRACT

5 years ago, my colleagues and I revealed the Chlamydia trachomatis virulence factor CpoS as a suppressor of host cell-autonomous immunity. Here, I reflect on the events that inspired and enabled this research and place our discoveries in context to past and most recent discoveries in the field.


Subject(s)
Chlamydia Infections , Chlamydia trachomatis , Humans , Virulence Factors
6.
ISME Commun ; 2(1): 45, 2022 May 24.
Article in English | MEDLINE | ID: mdl-37938728

ABSTRACT

The phylum Chlamydiae consists of obligate intracellular bacteria including major human pathogens and diverse environmental representatives. Here we investigated the Rhabdochlamydiaceae, which is predicted to be the largest and most diverse chlamydial family, with the few described members known to infect arthropod hosts. Using published 16 S rRNA gene sequence data we identified at least 388 genus-level lineages containing about 14 051 putative species within this family. We show that rhabdochlamydiae are mainly found in freshwater and soil environments, suggesting the existence of diverse, yet unknown hosts. Next, we used a comprehensive genome dataset including metagenome assembled genomes classified as members of the family Rhabdochlamydiaceae, and we added novel complete genome sequences of Rhabdochlamydia porcellionis infecting the woodlouse Porcellio scaber, and of 'Candidatus R. oedothoracis' associated with the linyphiid dwarf spider Oedothorax gibbosus. Comparative analysis of basic genome features and gene content with reference genomes of well-studied chlamydial families with known host ranges, namely Parachlamydiaceae (protist hosts) and Chlamydiaceae (human and other vertebrate hosts) suggested distinct niches for members of the Rhabdochlamydiaceae. We propose that members of the family represent intermediate stages of adaptation of chlamydiae from protists to vertebrate hosts. Within the genus Rhabdochlamydia, pronounced genome size reduction could be observed (1.49-1.93 Mb). The abundance and genomic distribution of transposases suggests transposable element expansion and subsequent gene inactivation as a mechanism of genome streamlining during adaptation to new hosts. This type of genome reduction has never been described before for any member of the phylum Chlamydiae. This study provides new insights into the molecular ecology, genomic diversity, and evolution of representatives of one of the most divergent chlamydial families.

7.
FEMS Microbiol Rev ; 45(1)2021 01 08.
Article in English | MEDLINE | ID: mdl-32897321

ABSTRACT

The phylum Chlamydiae constitutes a group of obligate intracellular bacteria that infect a remarkably diverse range of host species. Some representatives are significant pathogens of clinical or veterinary importance. For instance, Chlamydia trachomatis is the leading infectious cause of blindness and the most common bacterial agent of sexually transmitted diseases. Chlamydiae are exceptionally dependent on their eukaryotic host cells as a consequence of their developmental biology. At the same time, host cell death is an integral part of the chlamydial infection cycle. It is therefore not surprising that the bacteria have evolved exquisite and versatile strategies to modulate host cell survival and death programs to their advantage. The recent introduction of tools for genetic modification of Chlamydia spp., in combination with our increasing awareness of the complexity of regulated cell death in eukaryotic cells, and in particular of its connections to cell-intrinsic immunity, has revived the interest in this virulence trait. However, recent advances also challenged long-standing assumptions and highlighted major knowledge gaps. This review summarizes current knowledge in the field and discusses possible directions for future research, which could lead us to a deeper understanding of Chlamydia's virulence strategies and may even inspire novel therapeutic approaches.


Subject(s)
Cell Death , Chlamydia Infections/pathology , Host-Pathogen Interactions/physiology , Chlamydia trachomatis , Humans
8.
Sci Rep ; 10(1): 18269, 2020 10 26.
Article in English | MEDLINE | ID: mdl-33106516

ABSTRACT

Susceptibility to infectious diseases is determined by a complex interaction between host and pathogen. For infections with the obligate intracellular bacterium Chlamydia trachomatis, variation in immune activation and disease presentation are regulated by both host genetic diversity and pathogen immune evasion. Previously, we discovered a single nucleotide polymorphism (rs2869462) associated with absolute abundance of CXCL10, a pro-inflammatory T-cell chemokine. Here, we report that levels of CXCL10 change during C. trachomatis infection of cultured cells in a manner dependent on both host and pathogen. Linear modeling of cellular traits associated with CXCL10 levels identified a strong, negative correlation with bacterial burden, suggesting that C. trachomatis actively suppresses CXCL10. We identified the pathogen-encoded factor responsible for this suppression as the chlamydial protease- or proteasome-like activity factor, CPAF. Further, we applied our modeling approach to other host cytokines in response to C. trachomatis and found evidence that RANTES, another T-cell chemoattractant, is actively suppressed by Chlamydia. However, this observed suppression of RANTES is not mediated by CPAF. Overall, our results demonstrate that CPAF suppresses CXCL10 to evade the host cytokine response and that modeling of cellular infection parameters can reveal previously unrecognized facets of host-pathogen interactions.


Subject(s)
Chemokine CXCL10/genetics , Chlamydia Infections/genetics , Chlamydia trachomatis/enzymology , Endopeptidases/metabolism , Polymorphism, Single Nucleotide , Animals , Cell Line , Chemokine CCL5/metabolism , Chemokine CXCL10/metabolism , Chlamydia Infections/metabolism , Chlamydia trachomatis/genetics , Chlorocebus aethiops , HeLa Cells , Humans , Models, Biological , Vero Cells
9.
PLoS One ; 14(11): e0224324, 2019.
Article in English | MEDLINE | ID: mdl-31697687

ABSTRACT

The ability to introduce targeted genetic modifications in microbial genomes has revolutionized our ability to study the role and mode of action of individual bacterial virulence factors. Although the fastidious lifestyle of obligate intracellular bacterial pathogens poses a technical challenge to such manipulations, the last decade has produced significant advances in our ability to conduct molecular genetic analysis in Chlamydia trachomatis, a major bacterial agent of infertility and blindness. Similar approaches have not been established for the closely related veterinary Chlamydia spp., which cause significant economic damage, as well as rare but potentially life-threatening infections in humans. Here we demonstrate the feasibility of conducting site-specific mutagenesis for disrupting virulence genes in C. caviae, an agent of guinea pig inclusion conjunctivitis that was recently identified as a zoonotic agent in cases of severe community-acquired pneumonia. Using this approach, we generated C. caviae mutants deficient for the secreted effector proteins IncA and SinC. We demonstrate that C. caviae IncA plays a role in mediating fusion of the bacteria-containing vacuoles inhabited by C. caviae. Moreover, using a chicken embryo infection model, we provide first evidence for a role of SinC in C. caviae virulence in vivo.


Subject(s)
Chlamydia Infections/genetics , Chlamydia/genetics , Mutagenesis, Insertional/genetics , Zoonoses/genetics , Animals , Bacterial Proteins/genetics , Chick Embryo , Chlamydia/pathogenicity , Chlamydia Infections/microbiology , Chlamydia Infections/pathology , Chlamydia trachomatis/pathogenicity , Chlorocebus aethiops , HeLa Cells , Humans , Introns/genetics , Mutation/genetics , Vero Cells , Zoonoses/microbiology , Zoonoses/pathology
10.
Cell Death Differ ; 26(8): 1485-1500, 2019 08.
Article in English | MEDLINE | ID: mdl-30375511

ABSTRACT

Chlamydia trachomatis is an obligate intracellular bacterial agent responsible for ocular infections and sexually transmitted diseases. It has been postulated that Chlamydia inhibits apoptosis in host cells to maintain an intact replicative niche until sufficient infectious progeny can be generated. Here we report that, while cells infected with C. trachomatis are protected from apoptosis at early and mid-stages of infection, they remain susceptible to the induction of other cell death modalities. By monitoring the fate of infected cells by time-lapse video microscopy and by analyzing host plasma membrane integrity and the activity of caspases, we determined that C. trachomatis-infected cells exposed to pro-apoptotic stimuli predominately died by a mechanism resembling necrosis. This necrotic death of infected cells occurred with kinetics similar to the induction of apoptosis in uninfected cells, indicating that C. trachomatis fails to considerably prolong the lifespan of its host cell when exposed to pro-apoptotic insults. Inhibitors of bacterial protein synthesis partially blocked necrotic death of infected cells, suggesting that the switch from apoptosis to necrosis relies on an active contribution of the bacteria. Tumor necrosis factor alpha (TNF-α)-mediated induction of necrosis in cells infected with C. trachomatis was not dependent on canonical regulators of necroptosis, such as RIPK1, RIPK3, or MLKL, yet was blocked by inhibition or depletion of CASP8. These results suggest that alternative signaling pathways regulate necrotic death in the context of C. trachomatis infections. Finally, consistent with the inability of C. trachomatis to preserve host cell viability, necrosis resulting from pro-apoptotic conditions significantly impaired production of infectious progeny. Taken together, our findings suggest that Chlamydia's anti-apoptotic activities are not sufficient to protect the pathogen's replicative niche.


Subject(s)
Apoptosis , Chlamydia trachomatis/growth & development , Anti-Bacterial Agents/pharmacology , Apoptosis/drug effects , Chlamydia trachomatis/drug effects , HeLa Cells , Humans , Staurosporine/pharmacology
11.
Microb Cell ; 4(3): 101-104, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28357396

ABSTRACT

Bacteria of the phylum Chlamydiae infect a diverse range of eukaryotic host species, including vertebrate animals, invertebrates, and even protozoa. Characteristics shared by all Chlamydiae include their obligate intracellular lifestyle and a biphasic developmental cycle. The infectious form, the elementary body (EB), invades a host cell and differentiates into the replicative form, the reticulate body (RB), which proliferates within a membrane-bound compartment, the inclusion. After several rounds of division, RBs retro-differentiate into EBs that are then released to infect neighboring cells. The consequence of this obligatory transition between replicative and infectious forms inside cells is that Chlamydiae absolutely depend on the viability and functionality of their host cell throughout the entire infection cycle. We recently conducted a forward genetic screen in Chlamydia trachomatis, a common sexually transmitted human pathogen, and identified a mutant that caused premature death in the majority of infected host cells. We employed emerging genetic tools in Chlamydia to link this cytotoxicity to the loss of the protein CpoS (Chlamydia promoter of survival) that normally localizes to the membrane of the pathogen-containing vacuole. CpoS-deficient bacteria also induced an exaggerated type-1 interferon response in infected cells, produced reduced numbers of infectious EBs in cell culture, and were cleared faster from the mouse genital tract in a transcervical infection model in vivo. The analysis of this CpoS-deficient mutant yielded unique insights into the nature of cell-autonomous defense responses against Chlamydia and highlighted the importance of Chlamydia-mediated control of host cell fate for the success of the pathogen.

12.
Cell Host Microbe ; 21(1): 113-121, 2017 Jan 11.
Article in English | MEDLINE | ID: mdl-28041929

ABSTRACT

Evading cell death is critical for Chlamydia to maintain a replicative niche, but the underlying mechanisms are unknown. We screened a library of Chlamydia mutants for modulators of cell death. Inactivation of the inclusion membrane protein CpoS (Chlamydia promoter of survival) induced rapid apoptotic and necrotic death in infected cells. The protection afforded by CpoS is limited to the inclusion in which it resides, indicating that it counteracts a spatially restricted pro-death signal. CpoS-deficient Chlamydia induced an exacerbated type I interferon response that required the host cGAS/STING/TBK1/IRF3 signaling pathway. Disruption of STING, but not cGAS or IRF3, attenuated cell death, suggesting that STING mediates Chlamydia-induced cell death independent of its role in regulating interferon responses. CpoS-deficient strains are attenuated in their ability to propagate in cell culture and are cleared faster from the murine genital tract, highlighting the importance of CpoS for Chlamydia pathogenesis.


Subject(s)
Bacterial Proteins/genetics , Cell Death/immunology , Chlamydia trachomatis/immunology , Chlamydia trachomatis/pathogenicity , Interferon Type I/immunology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Animals , Bacterial Proteins/metabolism , Chlamydia trachomatis/genetics , Chlorocebus aethiops , Female , HeLa Cells , Humans , Interferon Regulatory Factor-3/metabolism , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Vero Cells
13.
Annu Rev Microbiol ; 70: 179-98, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27607551

ABSTRACT

Species of Chlamydia are the etiologic agent of endemic blinding trachoma, the leading cause of bacterial sexually transmitted diseases, significant respiratory pathogens, and a zoonotic threat. Their dependence on an intracellular growth niche and their peculiar developmental cycle are major challenges to elucidating their biology and virulence traits. The last decade has seen tremendous advances in our ability to perform a molecular genetic analysis of Chlamydia species. Major achievements include the generation of large collections of mutant strains, now available for forward- and reverse-genetic applications, and the introduction of a system for plasmid-based transformation enabling complementation of mutations; expression of foreign, modified, or reporter genes; and even targeted gene disruptions. This review summarizes the current status of the molecular genetic toolbox for Chlamydia species and highlights new insights into their biology and new challenges in the nascent field of Chlamydia genetics.


Subject(s)
Bacterial Proteins/genetics , Chlamydia Infections/microbiology , Chlamydia/genetics , Bacterial Proteins/metabolism , Chlamydia/classification , Chlamydia/isolation & purification , Chlamydia/metabolism , Genome, Bacterial , Humans
14.
Environ Microbiol ; 15(11): 2980-93, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24024954

ABSTRACT

Environmental chlamydiae are a diverse group of obligate intracellular bacteria related to well-known pathogens of humans. To date, only very little is known about chlamydial species infecting arthropods. In this study, we used cocultivation with insect cells for recovery and maintenance of Rhabdochlamydia porcellionis, a parasite of the crustacean host Porcellio scaber. In vitro, the infection cycle of R. porcellionis was completed within 7 days, resulting in the release of infectious particles by host cell lysis. Lack of apoptosis induction during the entire course of infection, combined with a reduced sensitivity of infected cultures to experimentally induced programmed cell death, indicates that R. porcellionis like its human pathogenic relatives counteracts this host defence mechanism. Interestingly, the rod-shaped variant of R. porcellionis, proposed to represent their mature infective stage, was not detected in cell culture, suggesting that its development may require prolonged maturation or may be triggered by specific conditions encountered only in the animal host. This first cell culture-based system for the cultivation and investigation of an arthropod-associated chlamydial species will help to better understand the biology of a so far neglected group of chlamydiae and its recently suggested potential to cause disease in humans.


Subject(s)
Apoptosis/physiology , Chlamydiales/pathogenicity , Host-Pathogen Interactions/physiology , Isopoda/microbiology , Acanthamoeba/microbiology , Animals , Cell Line , Cytoplasm , Humans , Insecta/microbiology
15.
PLoS Pathog ; 9(8): e1003553, 2013.
Article in English | MEDLINE | ID: mdl-23950718

ABSTRACT

The Chlamydiae are a highly successful group of obligate intracellular bacteria, whose members are remarkably diverse, ranging from major pathogens of humans and animals to symbionts of ubiquitous protozoa. While their infective developmental stage, the elementary body (EB), has long been accepted to be completely metabolically inert, it has recently been shown to sustain some activities, including uptake of amino acids and protein biosynthesis. In the current study, we performed an in-depth characterization of the metabolic capabilities of EBs of the amoeba symbiont Protochlamydia amoebophila. A combined metabolomics approach, including fluorescence microscopy-based assays, isotope-ratio mass spectrometry (IRMS), ion cyclotron resonance Fourier transform mass spectrometry (ICR/FT-MS), and ultra-performance liquid chromatography mass spectrometry (UPLC-MS) was conducted, with a particular focus on the central carbon metabolism. In addition, the effect of nutrient deprivation on chlamydial infectivity was analyzed. Our investigations revealed that host-free P. amoebophila EBs maintain respiratory activity and metabolize D-glucose, including substrate uptake as well as host-free synthesis of labeled metabolites and release of labeled CO2 from (13)C-labeled D-glucose. The pentose phosphate pathway was identified as major route of D-glucose catabolism and host-independent activity of the tricarboxylic acid (TCA) cycle was observed. Our data strongly suggest anabolic reactions in P. amoebophila EBs and demonstrate that under the applied conditions D-glucose availability is essential to sustain metabolic activity. Replacement of this substrate by L-glucose, a non-metabolizable sugar, led to a rapid decline in the number of infectious particles. Likewise, infectivity of Chlamydia trachomatis, a major human pathogen, also declined more rapidly in the absence of nutrients. Collectively, these findings demonstrate that D-glucose is utilized by P. amoebophila EBs and provide evidence that metabolic activity in the extracellular stage of chlamydiae is of major biological relevance as it is a critical factor affecting maintenance of infectivity.


Subject(s)
Acanthamoeba/microbiology , Chlamydiales/metabolism , Citric Acid Cycle/physiology , Glucose/metabolism , Oxygen Consumption/physiology , Pentose Phosphate Pathway/physiology , Acanthamoeba/metabolism , Acanthamoeba/ultrastructure , Chlamydia trachomatis/metabolism , Chlamydia trachomatis/pathogenicity , Chlamydia trachomatis/ultrastructure , Chlamydiales/ultrastructure , HeLa Cells , Humans , Symbiosis/physiology
16.
PLoS One ; 7(1): e29565, 2012.
Article in English | MEDLINE | ID: mdl-22253735

ABSTRACT

The fundamental role of programmed cell death in host defense is highlighted by the multitude of anti-apoptotic strategies evolved by various microbes, including the well-known obligate intracellular bacterial pathogens Chlamydia trachomatis and Chlamydia (Chlamydophila) pneumoniae. As inhibition of apoptosis is assumed to be essential for a successful infection of humans by these chlamydiae, we analyzed the anti-apoptotic capacity of close relatives that occur as symbionts of amoebae and might represent emerging pathogens. While Simkania negevensis was able to efficiently replicate within insect cells, which served as model for metazoan-derived host cells, the Parachlamydiaceae (Parachlamydia acanthamoebae and Protochlamydia amoebophila) displayed limited intracellular growth, yet these bacteria induced typical features of apoptotic cell death, including formation of apoptotic bodies, nuclear condensation, internucleosomal DNA fragmentation, and effector caspase activity. Induction of apoptosis was dependent on bacterial activity, but not bacterial de novo protein synthesis, and was detectable already at very early stages of infection. Experimental inhibition of host cell death greatly enhanced parachlamydial replication, suggesting that lack of potent anti-apoptotic activities in Parachlamydiaceae may represent an important factor compromising their ability to successfully infect non-protozoan hosts. These findings highlight the importance of the evolution of anti-apoptotic traits for the success of chlamydiae as pathogens of humans and animals.


Subject(s)
Apoptosis , Chlamydiales/growth & development , Drosophila melanogaster/cytology , Drosophila melanogaster/microbiology , Amoeba/drug effects , Amoeba/microbiology , Animals , Apoptosis/drug effects , Caspase Inhibitors , Caspases/metabolism , Cell Line , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Chlamydia Infections/microbiology , Chlamydiales/drug effects , DNA Fragmentation/drug effects , Drosophila melanogaster/drug effects , Protease Inhibitors/pharmacology , Symbiosis/drug effects , Time Factors
17.
Proteomics ; 11(10): 1868-92, 2011 May.
Article in English | MEDLINE | ID: mdl-21500343

ABSTRACT

Chlamydiae belong to the most successful intracellular bacterial pathogens. They display a complex developmental cycle and an extremely broad host spectrum ranging from vertebrates to protozoa. The family Chlamydiaceae comprises exclusively well-known pathogens of humans and animals, whereas the members of its sister group, the Parachlamydiaceae, naturally occur as symbionts of free-living amoebae. Comparative analysis of these two groups provides valuable insights into chlamydial evolution and mechanisms for microbe-host interaction. Based on the complete genome sequence of the Acanthamoeba spp. symbiont Protochlamydia amoebophila UWE25, we performed the first detailed proteome analysis of the infectious stage of a symbiotic chlamydia. A 2-D reference proteome map was established and the analysis was extensively complemented by shotgun proteomics. In total, 472 proteins were identified, which represent 23.2% of all encoded proteins. These cover a wide range of functional categories, including typical house-keeping proteins, but also putative virulence-associated proteins. A number of proteins that are not encoded in genomes of Chlamydiaceae were observed and the expression of 162 proteins classified as hypothetical or unknown proteins could be demonstrated. Our findings indicate that P. amoebophila exploits its additional genetic repertoire (compared with the Chlamydiaceae), and that its elementary bodies are remarkably well equipped with proteins involved in transcription, translation, and energy generation.


Subject(s)
Acanthamoeba/microbiology , Bacterial Proteins/metabolism , Chlamydiales/metabolism , Proteome/chemistry , Bacterial Proteins/genetics , Chlamydiales/genetics , Chlamydiales/physiology , Electrophoresis, Gel, Two-Dimensional , Energy Metabolism , Metabolic Networks and Pathways , Microscopy, Electron, Transmission , Peptide Mapping , Protein Biosynthesis , Proteomics , Symbiosis/physiology , Transcription, Genetic
18.
Mol Microbiol ; 77(3): 687-700, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20545842

ABSTRACT

The phylum Chlamydiae consists exclusively of obligate intracellular bacteria. Some of them are formidable pathogens of humans, while others occur as symbionts of amoebae. These genetically intractable bacteria possess a developmental cycle consisting of replicative reticulate bodies and infectious elementary bodies, which are believed to be physiologically inactive. Confocal Raman microspectroscopy was applied to differentiate between reticulate bodies and elementary bodies of Protochlamydia amoebophila and to demonstrate in situ the labelling of this amoeba symbiont after addition of isotope-labelled phenylalanine. Unexpectedly, uptake of this amino acid was also observed for both developmental stages for up to 3 weeks, if incubated extracellularly with labelled phenylalanine, and P. amoebophila remained infective during this period. Furthermore, P. amoebophila energizes its membrane and performs protein synthesis outside of its host. Importantly, amino acid uptake and protein synthesis after extended extracellular incubation could also be demonstrated for the human pathogen Chlamydia trachomatis, which synthesizes stress-related proteins under these conditions as shown by 2-D gel electrophoresis and MALDI-TOF/TOF mass spectrometry. These findings change our perception of chlamydial biology and reveal that host-free analyses possess a previously not recognized potential for direct experimental access to these elusive microorganisms.


Subject(s)
Chlamydia Infections/microbiology , Chlamydia/cytology , Chlamydia/growth & development , Spectrum Analysis, Raman/methods , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cell Line , Chlamydia/chemistry , Chlamydia/metabolism , Chlamydia Infections/diagnosis , Electrophoresis, Gel, Two-Dimensional , Humans , Phenylalanine/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
ISME J ; 4(11): 1366-74, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20485385

ABSTRACT

The free-living but facultatively pathogenic amoebae of the genus Acanthamoeba are frequently infected with bacterial endosymbionts that can have a profound influence on the physiology and viability of their host. Parachlamydia acanthamoebae, a chlamydial endosymbiont in acanthamoebae, is known to be either symbiotic or lytic to its host, depending on the ambient conditions, for example, temperature. Moreover, parachlamydiae can also inhibit the encystment process in Acanthamoeba, an essential survival strategy of their host for the evasion of chemotherapeutic agents, heat, desiccation and radiation. To obtain a more detailed picture of the intracellular interactions of parachlamydiae and acanthamoebae, we studied parachlamydial infection in several Acanthamoeba isolates at the proteomic level by means of two-dimensional gel electrophoresis (2DE) and mass spectrometry. We observed that P. acanthamoebae can infect all three morphological subtypes of the genus Acanthamoeba and that the proteome pattern of released P. acanthamoebae elementary bodies was always practically identical regardless of the Acanthamoeba strain infected. Moreover, by comparing proteome patterns of encysting cells from infected and uninfected Acanthamoeba cultures, it was shown that encystment is blocked by P. acanthamoebae at a very early stage. Finally, on 2D-gels of purified P. acanthamoebae from culture supernatants, a subunit of the NADH-ubiquinone oxidoreductase complex, that is, an enzyme that has been described as an indicator for bacterial virulence was identified by a mass spectrometric and bioinformatic approach.


Subject(s)
Acanthamoeba/microbiology , Bacterial Proteins/metabolism , Chlamydiales/physiology , Host-Parasite Interactions , Proteome/analysis , Protozoan Proteins/metabolism , Animals , Chlamydiales/chemistry , Chlamydiales/growth & development , Electrophoresis, Gel, Two-Dimensional , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...