Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 933: 172932, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38703860

ABSTRACT

Biodiversity is essential for the functioning of ecosystems and the provision of services. In recent years, the role of plantations in mitigating climate change through carbon sequestration has been highlighted. In the Mediterranean area, high-density poplar plantations in short-rotation with resprouting management (SRC) have been established for biomass purposes on mostly irrigated agricultural land, coexisting with rainfed and irrigated agricultural crops. This study aims to assess the contribution of these plantations to this type of agroforest ecosystem in terms of biodiversity. For this purpose, both flora and fauna diversity were evaluated both within and outside of the plantation. Additionally, the accumulated carbon in the biomass, as well as in the accompanying vegetation within the plantation, was assessed. Different indices were used to evaluate both the intrinsic diversity of the forest plantation and the degree of substitution and complementarity between the different communities of the landscape. Our findings reveal distinct biodiversity patterns in the land-use scenarios sampled. Specifically, we observed significantly higher flora-species richness in SRC plantations than in the adjacent agricultural land, whereas fauna richness showed a similar but slightly higher level in the forested area. A moderate level of complementarity between land uses was found for insects and mammals (around 45 %), contrasting with high complementarity for birds (87 %) and flora (90 %). This suggests substantial turnover and replacement among these ecological environments. Our results indicate that a second rotation (4 year) plantation could accumulate a total of 61.6 Mg C ha-1, and even though adventitious flora represents <2 % of the total carbon accumulated, its importance in providing ecosystem services is considerable. Hence, these findings evidence the fact that SRC poplar plantations can enhance biodiversity in Mediterranean agroforest ecosystems and actively contribute to various provisioning ecosystem services, including carbon sequestration, reflecting a multi-objective approach that extends beyond biomass production.


Subject(s)
Agriculture , Biodiversity , Biomass , Carbon Sequestration , Carbon , Populus , Agriculture/methods , Carbon/analysis , Forests , Ecosystem , Climate Change
2.
J Environ Manage ; 347: 119062, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37783085

ABSTRACT

Poplar short rotation coppice (SRC) systems are important for biomass production and for short-to medium-term carbon (C) sequestration, contributing to a low-carbon bioeconomy and thus helping to mitigate global warming. The productivity and profitability of these plantations are, however, challenged under restrictive irrigation associated with climate change. This study compares the above- and below-ground C sequestration potential and economic viability of a 12-year plantation cycle (4 rotations of 3 years each) under Mediterranean conditions with optimum irrigation (T1) and 50% irrigation reduction (T2), analysing other promising biomass uses in the form of bioproducts. A total of 138 trees of the highly productive hybrid ('AF2') in a SRC-trial were sampled monthly (first rotation). Additionally, data from an extensive poplar plantation network (30 sites) was used to complete data for the plantation cycle. The average C content for above- and below-ground biomass was 17.04 Mg C ha-1 yr-1 (T1), falling by 24% in T2. The net present value (NPV) in T1 (6461 € ha-1) was 52% lower under T2 conditions. Extra payments for C sequestration increased the NPV to 8023 for T1 and 4331 € ha-1 for T2. Roots represent an important C storage in the soil, accumulating 29.9 Mg C ha-1 (T1) and 22.8 Mg C ha-1 (T2) by the end of the cycle in our study. The mitigation potential is strongly fortified when the share of bioproducts in biomass end-use increases. Assuming a distribution of 50% bioenergy and 50% bioproducts, emission were reduced between -114 Mg CO2eq ha-1 (T1) and -88 Mg CO2eq ha-1 (T2) compared to BAU until end of the century. This scenario plays a crucial sink-effect role by storing C contained in biomass, which is not immediately released into the atmosphere.


Subject(s)
Carbon , Populus , Trees , Biomass , Soil , Carbon Sequestration
SELECTION OF CITATIONS
SEARCH DETAIL
...