Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(7): 073601, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38427893

ABSTRACT

Transform-limited photon emission from quantum emitters is essential for high-fidelity entanglement generation. In this Letter, we report the coherent optical property of a single negatively charged lead-vacancy (PbV) center in diamond. Photoluminescence excitation measurements reveal stable fluorescence with a linewidth of 39 MHz at 6 K, close to the transform limit estimated from the lifetime measurement. We observe 4 orders of magnitude different linewidths of the two zero-phonon lines, and find that the phonon-induced relaxation in the ground state contributes to this huge difference in the linewidth. Because of the suppressed phonon absorption in the PbV center, we observe nearly transform-limited photon emission up to 16 K, demonstrating its high temperature robustness compared to other color centers in diamond.

2.
Phys Rev Lett ; 132(2): 026901, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38277597

ABSTRACT

Negatively charged group-IV defects in diamond show great potential as quantum network nodes due to their efficient spin-photon interface. However, reaching sufficiently long coherence times remains a challenge. In this work, we demonstrate coherent control of germanium vacancy center (GeV) at millikelvin temperatures and extend its coherence time by several orders of magnitude to more than 20 ms. We model the magnetic and amplitude noise as an Ornstein-Uhlenbeck process, reproducing the experimental results well. The utilized method paves the way to optimized coherence times of group-IV defects in various experimental conditions and their successful applications in quantum technologies.

3.
Phys Rev Lett ; 122(19): 190503, 2019 May 17.
Article in English | MEDLINE | ID: mdl-31144926

ABSTRACT

In this Letter, we demonstrate initialization and readout of nuclear spins via a negatively charged silicon-vacancy (SiV) electron spin qubit. Under Hartmann-Hahn conditions the electron spin polarization is coherently transferred to the nuclear spin. The readout of the nuclear polarization is observed via the fluorescence of the SiV. We also show that the coherence time of the nuclear spin (6 ms) is limited by the electron spin-lattice relaxation due to the hyperfine coupling to the electron spin. This Letter paves the way toward realization of building blocks of quantum hardware with an efficient spin-photon interface based on the SiV color center coupled to a long lasting nuclear memory.

4.
Science ; 363(6428): 728-731, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30765564

ABSTRACT

Nitrogen-vacancy (NV) centers in diamond have become an important instrument for quantum sensing and quantum information science. However, the readout of NV spin state requires bulky optical setups, limiting fabrication of miniaturized compact devices for practical use. Here we realized photoelectrical detection of magnetic resonance as well as Rabi oscillations on a single-defect level. Furthermore, photoelectrical imaging of individual NV centers at room temperature was demonstrated, surpassing conventional optical readout methods by providing high imaging contrast and signal-to-noise ratio. These results pave the way toward fully integrated quantum diamond devices.

5.
Phys Rev Lett ; 119(25): 253601, 2017 Dec 22.
Article in English | MEDLINE | ID: mdl-29303349

ABSTRACT

Tin-vacancy (Sn-V) color centers were created in diamond via ion implantation and subsequent high-temperature annealing up to 2100 °C at 7.7 GPa. The first-principles calculation suggested that a large atom of tin can be incorporated into a diamond lattice with a split-vacancy configuration, in which a tin atom sits on an interstitial site with two neighboring vacancies. The Sn-V center showed a sharp zero phonon line at 619 nm at room temperature. This line split into four peaks at cryogenic temperatures, with a larger ground state splitting (∼850 GHz) than that of color centers based on other group-IV elements, i.e., silicon-vacancy (Si-V) and germanium-vacancy (Ge-V) centers. The excited state lifetime was estimated, via Hanbury Brown-Twiss interferometry measurements on single Sn-V quantum emitters, to be ∼5 ns. The order of the experimentally obtained optical transition energies, compared with those of Si-V and Ge-V centers, was in good agreement with the theoretical calculations.

6.
Phys Rev Lett ; 115(9): 093602, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26371651

ABSTRACT

All-optical addressing and coherent control of single solid-state based quantum bits is a key tool for fast and precise control of ground-state spin qubits. So far, all-optical addressing of qubits was demonstrated only in a very few systems, such as color centers and quantum dots. Here, we perform high-resolution spectroscopic of native and implanted single rare earth ions in solid, namely, a cerium ion in yttrium aluminum garnet (YAG) crystal. We find narrow and spectrally stable optical transitions between the spin sublevels of the ground and excited optical states. Utilizing these transitions we demonstrate the generation of a coherent dark state in electron spin sublevels of a single Ce^{3+} ion in YAG by coherent population trapping.

7.
Opt Express ; 23(26): 32961-7, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26831963

ABSTRACT

Single photon sources (SPS) are crucial for quantum key distribution. Here we demonstrate a stable triggered SPS at 738 nm with linewidth less than 5 nm at room temperature based on a negatively charged single silicon vacancy color center. Thanks to the short photon duration of about 1.3-1.7 ns, by using high repetition pulsed excitation at 30 MHz, the triggered single photon source generates 16.6 kcounts/s. And we discuss the feasibility of this triggered SPS in the application of quantum key distribution.

8.
Nature ; 509(7498): 66-70, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24784217

ABSTRACT

Future quantum communication will rely on the integration of single-photon sources, quantum memories and systems with strong single-photon nonlinearities. Two key parameters are crucial for the single-photon source: a high photon flux with a very small bandwidth, and a spectral match to other components of the system. Atoms or ions may act as single-photon sources--owing to their narrowband emission and their intrinsic spectral match to other atomic systems--and can serve as quantum nonlinear elements. Unfortunately, their emission rates are still limited, even for highly efficient cavity designs. Single solid-state emitters such as single organic dye molecules are significantly brighter and allow for narrowband photons; they have shown potential in a variety of quantum optical experiments but have yet to be interfaced with other components such as stationary memory qubits. Here we describe the optical interaction between Fourier-limited photons from a single organic molecule and atomic alkali vapours, which can constitute an efficient quantum memory. Single-photon emission rates reach up to several hundred thousand counts per second and show a high spectral brightness of 30,000 detectable photons per second per megahertz of bandwidth. The molecular emission is robust and we demonstrate perfect tuning to the spectral transitions of the sodium D line and efficient filtering, even for emitters at ambient conditions. In addition, we achieve storage of molecular photons originating from a single dibenzanthanthrene molecule in atomic sodium vapour. Given the large set of molecular emission lines matching to atomic transitions, our results enable the combination of almost ideal single-photon sources with various atomic vapours, such that experiments with giant single-photon nonlinearities, mediated, for example, by Rydberg atoms, become feasible.

9.
Phys Rev Lett ; 111(12): 120502, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-24093236

ABSTRACT

We report on optical detection of a single photostable Ce(3+) ion in an yttrium aluminium garnet (YAG) crystal and on its magneto-optical properties at room temperature. The spin quantum state of the emitting level of a single cerium ion in YAG can be initialized by a circularly polarized laser pulse. Coherent precession of the electron spin is read out by observing temporal behavior of circularly polarized fluorescence of the ion. This implies direct mapping of the spin quantum state of Ce(3+) ion onto the polarization state of the emitted photon and represents the quantum interface between a single spin and a single photon.

10.
Nat Nanotechnol ; 8(7): 487-92, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23793305

ABSTRACT

Electron and nuclear spins associated with point defects in insulators are promising systems for solid-state quantum technology. The electron spin is usually used for readout and addressing, and nuclear spins are used as exquisite quantum bits and memory systems. With these systems, single-shot readout of single nuclear spins as well as entanglement, aided by the electron spin, have been shown. Although the electron spin in this example is essential for readout, it usually limits the nuclear spin coherence, leading to a quest for defects with spin-free ground states. Here, we isolate a hitherto unidentified defect in diamond and use it at room temperature to demonstrate optical spin polarization and readout with exceptionally high contrast (up to 45%), coherent manipulation of an individual excited triplet state spin, and coherent nuclear spin manipulation using the triplet electron spin as a metastable ancilla. We demonstrate nuclear magnetic resonance and Rabi oscillations of the uncoupled nuclear spin in the spin-free electronic ground state. Our study demonstrates that nuclei coupled to single metastable electron spins are useful quantum systems with long memory times, in spite of electronic relaxation processes.

11.
Beilstein J Nanotechnol ; 3: 895-908, 2012.
Article in English | MEDLINE | ID: mdl-23365803

ABSTRACT

We demonstrate the coupling of single color centers in diamond to plasmonic and dielectric photonic structures to realize novel nanophotonic devices. Nanometer spatial control in the creation of single color centers in diamond is achieved by implantation of nitrogen atoms through high-aspect-ratio channels in a mica mask. Enhanced broadband single-photon emission is demonstrated by coupling nitrogen-vacancy centers to plasmonic resonators, such as metallic nanoantennas. Improved photon-collection efficiency and directed emission is demonstrated by solid immersion lenses and micropillar cavities. Thereafter, the coupling of diamond nanocrystals to the guided modes of micropillar resonators is discussed along with experimental results. Finally, we present a gas-phase-doping approach to incorporate color centers based on nickel and tungsten, in situ into diamond using microwave-plasma-enhanced chemical vapor deposition. The fabrication of silicon-vacancy centers in nanodiamonds by microwave-plasma-enhanced chemical vapor deposition is discussed in addition.

SELECTION OF CITATIONS
SEARCH DETAIL
...