Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 193(4): 1799-811, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25024382

ABSTRACT

Development of a vaccine against pulmonary tuberculosis may require immunization strategies that induce a high frequency of Ag-specific CD4 and CD8 T cells in the lung. The nonhuman primate model is essential for testing such approaches because it has predictive value for how vaccines elicit responses in humans. In this study, we used an aerosol vaccination strategy to administer AERAS-402, a replication-defective recombinant adenovirus (rAd) type 35 expressing Mycobacterium tuberculosis Ags Ag85A, Ag85B, and TB10.4, in bacillus Calmette-Guérin (BCG)-primed or unprimed rhesus macaques. Immunization with BCG generated low purified protein derivative-specific CD4 T cell responses in blood and bronchoalveolar lavage. In contrast, aerosolized AERAS-402 alone or following BCG induced potent and stable Ag85A/b-specific CD4 and CD8 effector T cells in bronchoalveolar lavage that largely produced IFN-γ, as well as TNF and IL-2. Such responses induced by BCG, AERAS-402, or both failed to confer overall protection following challenge with 275 CFUs M. tuberculosis Erdman, although vaccine-induced responses associated with reduced pathology were observed in some animals. Anamnestic T cell responses to Ag85A/b were not detected in blood of immunized animals after challenge. Overall, our data suggest that a high M. tuberculosis challenge dose may be a critical factor in limiting vaccine efficacy in this model. However, the ability of aerosol rAd immunization to generate potent cellular immunity in the lung suggests that using different or more immunogens, alternative rAd serotypes with enhanced immunogenicity, and a physiological challenge dose may achieve protection against M. tuberculosis.


Subject(s)
Mycobacterium tuberculosis/immunology , Tuberculosis Vaccines/immunology , Tuberculosis, Pulmonary/prevention & control , Vaccination/methods , Vaccines, Synthetic/immunology , Acyltransferases/immunology , Administration, Inhalation , Animals , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Bronchoalveolar Lavage Fluid/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunity, Cellular , Interferon-gamma/biosynthesis , Interleukin-2/biosynthesis , Lung/immunology , Lung/microbiology , Macaca mulatta , Male , Mycobacterium bovis/immunology , Mycobacterium tuberculosis/virology , Tuberculosis Vaccines/administration & dosage , Tuberculosis, Pulmonary/immunology , Tumor Necrosis Factor-alpha/biosynthesis , Vaccines, DNA , Vaccines, Synthetic/administration & dosage
2.
Mol Med ; 18: 647-58, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22396020

ABSTRACT

To prevent the global spread of tuberculosis (TB) infection, a novel vaccine that triggers potent and long-lived immunity is urgently required. A plasmid-based vaccine has been developed to enhance activation of major histocompatibility complex (MHC) class I-restricted CD8⁺ cytolytic T cells using a recombinant Bacille Calmette-Guérin (rBCG) expressing a pore-forming toxin and the Mycobacterium tuberculosis (Mtb) antigens Ag85A, 85B and TB10.4 followed by a booster with a nonreplicating adenovirus 35 (rAd35) vaccine vector encoding the same Mtb antigens. Here, the capacity of the rBCG/rAd35 vaccine to induce protective and biologically relevant CD8⁺ T-cell responses in a nonhuman primate model of TB was investigated. After prime/boost immunizations and challenge with virulent Mtb in rhesus macaques, quantification of immune responses at the single-cell level in cryopreserved tissue specimen from infected organs was performed using in situ computerized image analysis as a technological platform. Significantly elevated levels of CD3⁺ and CD8⁺ T cells as well as cells expressing interleukin (IL)-7, perforin and granulysin were found in TB lung lesions and spleen from rBCG/rAd35-vaccinated animals compared with BCG/rAd35-vaccinated or unvaccinated animals. The local increase in CD8⁺ cytolytic T cells correlated with reduced expression of the Mtb antigen MPT64 and also with prolonged survival after the challenge. Our observations suggest that a protective immune response in rBCG/rAd35-vaccinated nonhuman primates was associated with enhanced MHC class I antigen presentation and activation of CD8⁺ effector T-cell responses at the local site of infection in Mtb-challenged animals.


Subject(s)
BCG Vaccine/immunology , Mycobacterium tuberculosis/immunology , T-Lymphocytes, Cytotoxic/immunology , Tuberculosis/immunology , Tuberculosis/prevention & control , Animals , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Collagen Type I/metabolism , Female , Immunization, Secondary , Interleukin-7/metabolism , Macaca mulatta , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Splenic/immunology , Tuberculosis, Splenic/metabolism , Vaccination
3.
Hum Vaccin Immunother ; 8(3): 371-83, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22327496

ABSTRACT

Preclinical studies evaluating plague vaccine candidates have demonstrated that the F1 and V protein antigens of Yersinia pestis confer protection against challenge from virulent strains. Live-attenuated ΔphoP/Q Salmonella typhimurium recombinants were constructed expressing either F1, V antigens, F1 and V antigens, or a F1-V fusion from Asd (+) balanced-lethal plasmids. To improve antigen delivery, genes encoding plague antigens were modified in order to localize antigens to specific bacterial cellular compartments which include cytoplasmic, outer membrane, or secreted. Candidate vaccine strains were evaluated for growth characteristics, full-length lipopolysaccharide (LPS), plasmid stability, and antigen expression in vitro. Plague vaccine candidate strains with favorable in vitro profiles were evaluated in murine or rabbit preclinical oral immunogenicity studies. Attenuated S. typhimurium strains expressing cytoplasmically localized F1-V and V antigen antigens were more immunogenic than strains that secreted or localized plague antigens to the outer membrane. In particular, S. typhimurium M020 and M023, which express Asd(+)-plasmid derived soluble F1-V and soluble V antigen, respectively, at high levels in the bacterial cell cytoplasm were found to induce the highest levels of plague-specific serum antibodies. To further evaluate balanced-lethal plasmid retention capacity, ΔphoP/Q S. typhimurium PurB(+) and GlnA(+) balanced-lethal plasmid systems harboring F1-V were compared with M020 in vitro and in BALB/c mice in a immunogenicity study. Although there was no detectable difference in plague antigen expression in vitro, S. typhimurium M020 was the most immunogenic plague antigen vector strain evaluated, inducing high-titer serum IgG antibodies specific against F1, V and F1-V.


Subject(s)
Bacterial Proteins/genetics , Gene Knockout Techniques , Plague Vaccine/immunology , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Male , Mice , Plague Vaccine/genetics , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/immunology , Pore Forming Cytotoxic Proteins/metabolism , Rabbits , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Virulence Factors/genetics , Virulence Factors/immunology , Virulence Factors/metabolism
4.
Immunology ; 131(1): 128-40, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20465573

ABSTRACT

A better understanding of similarities and differences in the composition of the cellular immune system in non-human primates (NHPs) compared with human subjects will improve the interpretation of preclinical studies. It will also aid in addressing the usefulness of NHPs as subjects for studying chronic diseases, vaccine development and immune reconstitution. We employed high content colour flow cytometry and analysed simultaneously the expression of CD3, CD4, CD8alpha, CD8beta, CD16/CD56, CD45RA, CCR7, CD27, CD28, CD107a and the interleukin-7 receptor alpha-chain (IL-7Ralpha) in peripheral blood mononuclear cells (PBMCs) of 27 rhesus macaques and 16 healthy human subjects. Regulatory T cells (Tregs) were identified using anti-CD3, -CD4, -CD25, -FoxP3, and -IL-7Ralpha monoclonal antibodies. Responsiveness to IL-7 was gauged in a signal transducer and activation of transcription 5 (STAT-5) phosphorylation assay. Human and NHP PBMCs showed a similar T-cell composition pattern with some remarkable differences. Similarities: human and NHP CD4(+) and CD8(+) cells showed a similar STAT-5 phosphorylation pattern in response to IL-7. Multicolour flow cytometric analysis identified a CD4(+) CD8alphaalpha(+) CD8alphabeta(+) T-cell population in NHPs as well as in human subjects that expressed the degranulation marker CD107a and may represent a unique CD4(+) T-cell subset endowed with cytotoxic capacity. Differences: we identified in PBMCs from NHPs a higher proportion (5.16% in CD3(+) T cells) of CD8alphaalpha(+) T cells when compared with human donors (1.22% in CD3(+) T cells). NHP CD8alphaalpha(+) T cells produced tumour necrosis factor-alpha / interferon-gamma (TNF-alpha/IFN-gamma) or TNF-alpha, whereas human CD8alphaalpha(+) T cells produced simultaneously TNF-alpha/IFN-gamma and IL-2. A minor percentage of human CD8(+) T cells expressed CD25(bright) and FoxP3 (0.01%). In contrast, 0.07% of NHP CD8(+) T cells exhibited the CD25(bright) FoxP3(+) phenotype. PBMCs from NHPs showed less IL-7Ralpha-positive events in all T-cell subsets including CD4(+) Tregs (median 5%) as compared with human (median 12%). The data visualize commonalities and differences in immune cell subsets in humans and NHPs, most of them in long-lived memory cells and cells with suppressive functions. This provides a matrix to assess future efforts to study diseases and vaccines in NHPs.


Subject(s)
Immunity, Cellular , Macaca mulatta/immunology , T-Lymphocyte Subsets/immunology , Adult , Animals , Cytokines/metabolism , Female , Flow Cytometry , Humans , Interleukin-7/immunology , Phosphorylation , STAT5 Transcription Factor/metabolism , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Tumor Necrosis Factor-alpha/metabolism , Young Adult
5.
PLoS One ; 3(11): e3790, 2008.
Article in English | MEDLINE | ID: mdl-19023426

ABSTRACT

BACKGROUND: BCG vaccination, combined with adenoviral-delivered boosts, represents a reasonable strategy to augment, broaden and prolong immune protection against tuberculosis (TB). We tested BCG (SSI1331) (in 6 animals, delivered intradermally) and a recombinant (rBCG) AFRO-1 expressing perfringolysin (in 6 animals) followed by two boosts (delivered intramuscullary) with non-replicating adenovirus 35 (rAd35) expressing a fusion protein composed of Ag85A, Ag85B and TB10.4, for the capacity to induce antigen-specific cellular immune responses in rhesus macaques (Macaca mulatta). Control animals received diluent (3 animals). METHODS AND FINDINGS: Cellular immune responses were analyzed longitudinally (12 blood draws for each animal) using intracellular cytokine staining (TNF-alpha, IL-2 and IFN-gamma), T cell proliferation was measured in CD4(+), CD8alpha/beta(+), and CD8alpha/alpha(+) T cell subsets and IFN-gamma production was tested in 7 day PBMC cultures (whole blood cell assay, WBA) using Ag85A, Ag85B, TB10.4 recombinant proteins, PPD or BCG as stimuli. Animals primed with AFRO-1 showed i) increased Ag85B-specific IFN-gamma production in the WBA assay (median >400 pg/ml for 6 animals) one week after the first boost with adenoviral-delivered TB-antigens as compared to animals primed with BCG (<200 pg/ml), ii) stronger T cell proliferation in the CD8alpha/alpha(+) T cell subset (proliferative index 17%) as compared to BCG-primed animals (proliferative index 5% in CD8alpha/alpha(+) T cells). Polyfunctional T cells, defined by IFN-gamma, TNF-alpha and IL-2 production were detected in 2/6 animals primed with AFRO-1 directed against Ag85A/b and TB10.4; 4/6 animals primed with BCG showed a Ag85A/b responses, yet only a single animal exhibited Ag85A/b and TB10.4 reactivity. CONCLUSION: AFRO-1 induces qualitatively and quantitatively different cellular immune responses as compared with BCG in rhesus macaques. Increased IFN-gamma-responses and antigen-specific T cell proliferation in the CD8alpha/alpha+ T cell subset represents a valuable marker for vaccine-take in BCG-based TB vaccine trials.


Subject(s)
BCG Vaccine/administration & dosage , T-Lymphocytes/immunology , Adenoviridae/genetics , Animals , Antigens, Bacterial/genetics , BCG Vaccine/genetics , Bacterial Toxins/genetics , Female , Genetic Vectors , Hemolysin Proteins/genetics , Immunity, Cellular , Immunization, Secondary , Interferon-gamma/biosynthesis , Lymphocyte Activation , Macaca mulatta , Tuberculosis Vaccines/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics
6.
Vaccine ; 24(18): 3793-803, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16135393

ABSTRACT

We describe the evaluation of three live, attenuated deltaphoP/Q Salmonella enteric serovar Typhimurium strains expressing PEB1 minus its signal sequence (PEB1-ss) from three different plasmids: a pBR-based asd plasmid, an arabinose-based runaway plasmid, which each expressed PEB1-ss in the bacterial cytosol, and a PEB1::HlyA fusion plasmid that directs secretion of PEB1-ss into the extracellular milieu. Serum IgG responses specific for PEB1-ss were induced by pBR-derived and runaway plasmids, with 100 and 90% seroconversion, respectively, at a 1:500 dilution of anti-sera as measured by Western blot analysis, while the PEB1-ss::HlyA fusion plasmid induced serum IgG in only 20% of the mice. Although significant levels of anti-PEB serum IgG were induced, no protection against oral Campylobacter jejuni challenge was observed.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Vaccines/immunology , Campylobacter Infections/prevention & control , Campylobacter jejuni/immunology , Salmonella typhimurium/immunology , Administration, Oral , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/genetics , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/genetics , Blotting, Western , Campylobacter Infections/pathology , Campylobacter Infections/physiopathology , Colony Count, Microbial , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Feces/microbiology , Female , Genetic Vectors , Hemolysin Proteins/genetics , Hemolysin Proteins/immunology , Immunoglobulin G/blood , Mice , Mice, Inbred BALB C , Plasmids , Protein Sorting Signals/genetics , Salmonella typhimurium/genetics , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
7.
Expert Rev Vaccines ; 3(5): 585-95, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15485338

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is recognized as one of the major causes of infectious diarrhea in developing countries. Worldwide, the incidence of ETEC infections is estimated to result in 650 million cases of diarrhea and 380,000 deaths in children under 5 years of age. ETEC is also an important cause of travelers' diarrhea in people traveling to endemic regions of the world. Although ETEC is an uncommon cause of infections in the USA, there have been 14 reported outbreaks of ETEC in the USA and seven on cruise ships over the 20-year period between 1975 and 1995. ETEC strains are comprised of a large number of serotypes that produce a variety of colonization factors and enterotoxins. On infection, ETEC first establishes itself by adhering to the epithelium of the small intestine via one or more colonization factor antigens or coli surface proteins. Once established, ETEC expresses one or more enterotoxin(s), which results in the production of secretory diarrhea. While the need for an efficacious, easily administered vaccine is great, there are currently no licensed ETEC vaccines available for use in endemic countries or for US travelers.


Subject(s)
Escherichia coli Infections/prevention & control , Escherichia coli Vaccines , Escherichia coli/immunology , Vaccination/trends , Animals , Bacterial Toxins/immunology , Bacterial Toxins/metabolism , Child , Child, Preschool , Clinical Trials as Topic , Diarrhea/microbiology , Diarrhea/prevention & control , Drug Design , Enterotoxins/immunology , Enterotoxins/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/immunology , Escherichia coli Proteins/metabolism , Fimbriae Proteins/immunology , Fimbriae Proteins/metabolism , Humans , Infant
SELECTION OF CITATIONS
SEARCH DETAIL
...