Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Appl Opt ; 63(7): B104-B113, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38437261

ABSTRACT

In digital holography and holographic interferometry, refocusing to the correct image plane can be challenging and may be obtained by various metrics. This paper proposes a digital refocus approach utilizing the linear relationship between in-plane speckle motion and defocus as a response to an induced phase gradient. The theory based on cross-correlations between pairs of intensity images reconstructed at different distances from the recording plane is discussed. Two simple metrics, based on the cross-correlation properties of the reconstructed speckle images, are proposed and evaluated utilizing both simulations and experiments. Experiments exhibit similar trends in which the estimate of the correct reconstruction distance differs by a small amount between the two metrics. The difference is found less than 1% in the estimate of the true reconstruction distance. The results show that either metric is able to yield a sufficient reconstruction distance for the reconstruction of the image plane.

2.
Appl Opt ; 61(19): 5806-5812, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-36255816

ABSTRACT

The depth-gating capacity of a spatially quasi-incoherent imaging interferometer is investigated in relation to the 3D correlation properties of diffraction field laser speckles. The system exploits a phase-stepped imaging Michelson-type interferometer in which spatially quasi-incoherent illumination is generated by passing an unexpanded laser beam through a rotating diffuser. Numerical simulations and optical experiments both verify that the depth-gating capacity of the imaging interferometer scales as λ/2NAp2, where λ is the wavelength of the laser and NAp is the numerical aperture of the illumination. For a set depth gate of 150 µm, the depth-gating capacity of the interferometer is demonstrated by scanning a standard USAF target through the measurement volume. The results obtained show that an imaging tool of this kind is expected to provide useful capabilities for imaging through disturbing media and where a single wavelength is required.

3.
Appl Spectrosc ; 76(11): 1307-1316, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36281542

ABSTRACT

Stimulated Raman scattering is a phenomenon with potential use in providing real-time molecular information in three-dimensions (3D) of a sample using imaging. For precise imaging, the knowledge about the spatial generation of stimulated Raman scattering is essential. To investigate the spatial behavior in an idealized case, computer simulations and experiments were performed. For the computer simulations, diffraction theory was used for the beam propagation complemented with nonlinear phase modulation describing the interaction between the light and matter. For the experiments, a volume of ethanol was illuminated by an expanded light beam and a plane inside the volume was imaged in transmission. For generating stimulated Raman scattering, a pump beam was focused into this volume and led to a beam dump after passing the volume. The pulse duration of the two beams were 6 ns and the pump beam energy ranged from 1 to 27 mJ. The effect of increasing pump power on the spatial distribution of the Raman gain and the spatial growth of the signal at different interaction lengths between the beam and the sample was investigated. The spatial width of the region where the stimulated Raman scattering signal was generated for experiments and simulation was 0.21 and 0.09 mm, respectively. The experimental and simulation results showed that most of the stimulated Raman scattering is generated close to the pump beam focus and the maximum peak of the Stokes intensity spatially comes shortly after the peak of the pump intensity.

4.
Appl Opt ; 59(14): 4548-4556, 2020 May 10.
Article in English | MEDLINE | ID: mdl-32400434

ABSTRACT

In this paper, we demonstrate how polarization-resolved holography can be used to determine if a particle is spherical or not and to estimate the size information of nanoparticles. The T-matrix method is used to model the scattered light from both spheres and spheroids. A dual-view polarization-resolved imaging system is used in order to obtain polarization ratio angles (ß1,ß2). From the obtained ß1 and ß2, it is possible to estimate whether or not a particle is spherical. It is found that nonsphericity only has a minor effect up to around sizes of 120 nm, and for that range, a spherical approximation is valid. For larger particles, the orientation influences the polarization response greatly. The size of a nonspherical particle can be estimated from the polarization ratio angles. The upper limit we can estimate unambiguously is around 200 nm. Finally, the model is applied to experimental measurements of naturally occurring particles in purified water. From the measurements, it is possible to separate spherical from nonspherical particles and also give a rough estimate of the size.

5.
Appl Spectrosc ; 74(4): 427-438, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31961223

ABSTRACT

Preprocessing of Raman spectra is generally done in three separate steps: (1) cosmic ray removal, (2) signal smoothing, and (3) baseline subtraction. We show that a convolutional neural network (CNN) can be trained using simulated data to handle all steps in one operation. First, synthetic spectra are created by randomly adding peaks, baseline, mixing of peaks and baseline with background noise, and cosmic rays. Second, a CNN is trained on synthetic spectra and known peaks. The results from preprocessing were generally of higher quality than what was achieved using a reference based on standardized methods (second-difference, asymmetric least squares, cross-validation). From 105 simulated observations, 91.4% predictions had smaller absolute error (RMSE), 90.3% had improved quality (SSIM), and 94.5% had reduced signal-to-noise (SNR) power. The CNN preprocessing generated reliable results on measured Raman spectra from polyethylene, paraffin and ethanol with background contamination from polystyrene. The result shows a promising proof of concept for the automated preprocessing of Raman spectra.

6.
Appl Opt ; 58(34): G31-G40, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31873482

ABSTRACT

A novel dual-view polarization-resolved pulsed holographic system for particle measurements is presented. Both dual-view configuration and polarization-resolved registration are well suited for particle holography. Dual-view registration improves the accuracy in the detection of 3D position and velocities, and polarization-resolved registration provides polarization information about individual particles. The necessary calibrations are presented, and aberrations are compensated for by mapping the positions in the two views to positions in a global coordinate system. The system is demonstrated on a sample consisting of 7 µm spherical polystyrene particles dissolved in water in a cuvette. The system is tested with different polarizations of the illumination. It is found that the dual view improves the accuracy significantly in particle tracking. It is also found that by having polarization-resolved holograms, it is possible to separate naturally occurring sub-micrometer particles from the larger, 7 µm seeding particles.

7.
Appl Opt ; 57(14): 3645-3652, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29791330

ABSTRACT

The two techniques of lateral shear interferometry and speckle deflectometry are analyzed in a common optical system for their ability to measure phase gradient fields of a thin phase object. The optical system is designed to introduce a shear in the frequency domain of a telecentric imaging system that gives a sensitivity of both techniques in proportion to the defocus introduced. In this implementation, both techniques successfully measure the horizontal component of the phase gradient field. The response of both techniques scales linearly with the defocus distance, and the precision is comparative, with a random error in the order of a few rad/mm. It is further concluded that the precision of the two techniques relates to the transverse speckle size in opposite ways. While a large spatial coherence width, and correspondingly a large lateral speckle size, makes lateral shear interferometry less susceptible to defocus, a large lateral speckle size is detrimental for speckle correlation. The susceptibility for the magnitude of the defocus is larger for the lateral shear interferometry technique as compared to the speckle deflectometry technique. The two techniques provide the same type of information; however, there are a few fundamental differences. Lateral shear interferometry relies on a special hardware configuration in which the shear angle is intrinsically integrated into the system. The design of a system sensitive to both in-plane phase gradient components requires a more complex configuration and is not considered in this paper. Speckle deflectometry, on the other hand, requires no special hardware, and both components of the phase gradient field are given directly from the measured speckle deformation field.

8.
Appl Opt ; 57(1): A157-A163, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29328141

ABSTRACT

Side scattered light from micrometer-sized particles is recorded using an off-axis digital holographic setup. From holograms, a volume is reconstructed with information about both intensity and phase. Finding particle positions is non-trivial, since poor axial resolution elongates particles in the reconstruction. To overcome this problem, the reconstructed wavefront around a particle is used to find the axial position. The method is based on the change in the sign of the curvature around the true particle position plane. The wavefront curvature is directly linked to the phase response in the reconstruction. In this paper we propose a new method of estimating the curvature based on a parametric model. The model is based on Chebyshev polynomials and is fit to the phase anomaly and compared to a plane wave in the reconstructed volume. From the model coefficients, it is possible to find particle locations. Simulated results show increased performance in the presence of noise, compared to the use of finite difference methods. The standard deviation is decreased from 3-39 µm to 6-10 µm for varying noise levels. Experimental results show a corresponding improvement where the standard deviation is decreased from 18 µm to 13 µm.

9.
Appl Opt ; 55(27): 7503-10, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27661575

ABSTRACT

Poor axial resolution in holographic particle imaging applications makes particle positioning in 3D space more complex since the positions are not directly obtained. In this paper we estimate the axial position of micrometer particles by finding the location where the wavefront curvature from the scattered light becomes zero. By recording scattered light at 90° using off-axis holography, the complex amplitude of the light is obtained. By reconstruction of the imaged scene, a complex valued volume is produced. From this volume, phase gradients are calculated for each particle and used to estimate the wavefront curvature. From simulations it is found that the wavefront curvature became zero at the true axial position of the particle. We applied this metric to track an axial translation experimentally using a telecentric off-axis holographic imaging system with a lateral magnification of M=1.33. A silicon cube with molded particles inside was used as sample. Holographic recordings are performed both before and after a 100 µm axial translation. From the estimated positions, it was found that the mean displacement of particles between recordings was 105.0 µm with a standard deviation of 25.3 µm.

10.
Appl Opt ; 55(27): 7517-21, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27661577

ABSTRACT

In this paper, we present a tailored multiwavelength Yb-fiber laser source in the 1.03 µm spectral region for spatially multiplexed digital holographic acquisitions. The wavelengths with bandwidths below 0.1 nm were spectrally separated by approximately 1 nm by employing fiber Bragg gratings for spectral control. As a proof of concept, the shape of a cylindrically shaped object with a diameter of 48 mm was measured. The holographic acquisition was performed in single-shot dual-wavelength mode with a synthetic wavelength of 1.1 mm, and the accuracy was estimated to be 3% of the synthetic wavelength.

11.
Appl Opt ; 55(27): 7735-43, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27661605

ABSTRACT

The objective of this paper is to describe a full-field deformation measurement method based on 3D speckle displacements. The deformation is evaluated from the slope of the speckle displacement function that connects the different reconstruction planes. For our experiment, a symmetrical arrangement with four illuminations parallel to the planes (x,z) and (y,z) was used. Four sets of speckle patterns were sequentially recorded by illuminating an object from the four directions, respectively. A single camera is used to record the holograms before and after deformations. Digital speckle photography is then used to calculate relative speckle displacements in each direction between two numerically propagated planes. The 3D speckle displacements vector is calculated as a combination of the speckle displacements from the holograms recorded in each illumination direction. Using the speckle displacements, problems associated with rigid body movements and phase wrapping are avoided. In our experiment, the procedure is shown to give the theoretical accuracy of 0.17 pixels yielding the accuracy of 2×10-3 in the measurement of deformation gradients.

12.
Appl Opt ; 55(13): 3429-34, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27140351

ABSTRACT

In this paper, pulsed digital holographic detection is coupled to the stimulated Raman scattering (SRS) process for imaging gases. A Q-switched Nd-YAG laser (532 nm) has been used to pump methane gas (CH4) at pressures up to 12 bars. The frequency-tripled (355 nm) beam from the same laser was used to pump an optical parametric oscillator (OPO). The Stokes beam (from the OPO) has been tuned to 629.93 nm so that the frequency difference between the pump (532 nm) and the Stokes beams fits a Raman active vibrational mode of the methane molecule (2922 cm-1). The pump beam has been spatially modulated with fringes produced in a Michelson interferometer. The pump and the Stokes beams were overlapped in time, space, and polarization on the gas molecules, resulting in a stimulated Raman gain of the Stokes beam and a corresponding loss of the pump beam through the SRS process. The resulting gain of the Stokes beam has been detected using pulsed digital holography by blending it with a reference beam on the detector. Two holograms of the Stokes beam, without and with the pump beam fringes present, were recorded. Intensity maps calculated from the recorded digital holograms showed amplification of the Stokes beam at the position of overlap with the pump beam fringes and the gas molecules. The gain of the Stokes beam has been separated from the background in the Fourier domain. A gain of about 4.5% at a pump beam average intensity of 4 MW/cm2 and a Stokes beam intensity of 0.16 MW/cm2 have been recorded at a gas pressure of 12 bars. The gain decreased linearly with decreasing gas pressure. The results show that SRS holography is a promising technique to pinpoint a specific species and record its spatial and temporal distribution.

13.
Opt Express ; 24(9): 9984-93, 2016 May 02.
Article in English | MEDLINE | ID: mdl-27137608

ABSTRACT

A stimulated Raman scattering (SRS) imaging technique based on spatial modulation of the pump beam has been used to study gases. The SRS gain signal was separated from the Stokes beam background in the spatial frequency domain. The SRS signal shows linear behaviour with the gas pressure at a range from 1.0 to 8.0 bars. The signal is linearly proportional to the pump beam intensity while it is enhanced with increasing the Stokes beam intensity to a certain limit than it saturates. Further, the chemical specificity of the technique has been investigated. Two sharp peaks with line width at half maximum of about 0.30 nm have been obtained at Stokes beam wavelengths of 629.93 nm and 634.05 nm corresponding to the methane and ethylene gases, respectively. The results show that SRS imaging is a promising technique to provide chemical specificity as well as spatial and temporal information of gaseous species.

14.
Appl Opt ; 54(16): 5003-10, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26192658

ABSTRACT

The objective of this paper is to describe a fast and robust automatic single-shot dual-wavelength holographic calibration method that can be used for online shape measurement applications. We present a model of the correction in two terms for each lobe, one to compensate the systematic errors caused by off-axis angles and the other for the curvature of the reference waves, respectively. Each hologram is calibrated independently without a need for an iterative procedure or information of the experimental set-up. The calibration parameters are extracted directly from speckle displacements between different reconstruction planes. The parameters can be defined as any fraction of a pixel to avoid the effect of quantization. Using the speckle displacements, problems associated with phase wrapping is avoided. The procedure is shown to give a shape accuracy of 34 µm using a synthetic wavelength of 1.1 mm for a measurement on a cylindrical test object with a trace over a field of view of 18 mm×18 mm.

15.
Appl Opt ; 54(20): 6377-85, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26193417

ABSTRACT

In this paper, stimulated Raman scattering (SRS) signals have been recorded by an optical imaging technique that is based on spatial modulation. A frequency doubled Q-switched Nd:YAG laser (532 nm) was used to pump a polymethyl methacrylate (PMMA) target. The frequency tripled (355 nm) beam from the same laser was used to pump an optical parametric oscillator (OPO). The Stokes beam (from the OPO) was tuned to 631.27 nm so that the frequency difference between the pump and the Stokes beams fit the Raman active vibrational mode of the PMMA molecule (2956 cm(-1)). The pump beam has been spatially modulated with fringes produced in a Michelson interferometer. The pump and the Stokes beams were overlapped on the target resulting in a gain of the Stokes beam of roughly 2.5% and a corresponding loss of the pump beam through the SRS process. To demodulate the SRS signal, two images of the Stokes beam without and with the pump beam fringes present were recorded. The difference between these two images was calculated and Fourier transformed. Then, the gain of the Stokes beam was separated from the background in the Fourier domain. The results show that spatial modulation of the pump beam is a promising method to separate the weak SRS signal from the background.

16.
Appl Opt ; 53(1): 123-31, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24513998

ABSTRACT

This paper discusses the possibility of evaluating the shape of a free-form object in comparison with its shape prescribed by a CAD model. Measurements are made based on a single-shot recording using dual-wavelength holography with a synthetic wavelength of 1.4 mm. Each hologram is numerically propagated to different focus planes and correlated. The result is a vector field of speckle displacements that is linearly dependent on the local distance between the measured surface and the focus plane. From these speckle displacements, a gradient field of the measured surface is extracted through a proportional relationship. The gradient field obtained from the measurement is then aligned to the shape of the CAD model using the iterative closest point (ICP) algorithm and regularization. Deviations between the measured shape and the CAD model are found from the phase difference field, giving a high precision shape evaluation. The phase differences and the CAD model are also used to find a representation of the measured shape. The standard deviation of the measured shape relative the CAD model varies between 7 and 19 µm, depending on the slope.

17.
Opt Express ; 21(21): 25316-23, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24150372

ABSTRACT

A frequency tripled Q-switched Nd-YAG laser (wavelength 355 nm, pulse duration 12 ns) has been used to pump Coumarin 153 dye solved in ethanol. Simultaneously, a frequency doubled pulse (532 nm) from the same laser is used to probe the solvent perpendicularly resulting in a gain through stimulated laser induced fluorescence (LIF) emission. The resulting gain of the probe beam is recorded using digital holography by blending it with a reference beam on the detector. Two digital holograms without and with the pump beam were recorded. Intensity maps were calculated from the recorded digital holograms and used to calculate the gain of the probe beam due to the stimulated LIF. In addition numerical data of the local temperature rise was calculated from the corresponding phase maps using Radon inversion. It was concluded that about 15% of the pump beam energy is transferred to the dye solution as heat while the rest is consumed in the radiative process. The results show that pulsed digital holography is a promising technique for quantitative study of fluorescent species.


Subject(s)
Algorithms , Coumarins/radiation effects , Fluorescent Dyes/radiation effects , Lasers , Microscopy, Fluorescence/methods , Signal Processing, Computer-Assisted , Holography , Ultraviolet Rays
18.
Appl Opt ; 52(17): 4006-12, 2013 Jun 10.
Article in English | MEDLINE | ID: mdl-23759849

ABSTRACT

Reflection measurements were performed on dry and moistened sand grains and glass spheres, respectively. A simple model for determining the water content is proposed from looking at the reflection distribution in the plane of incidence. The model is a combination of two sheared cosine-functions and consists of only two parameters. One parameter controls whether the reflection is mainly in the forward or backward direction. The former is true when the water content is high and the latter is true when the material is dry. The other parameter gives an idea of the homogeneity of the material.

19.
Ultrasonics ; 53(2): 630-4, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23164172

ABSTRACT

In ultrasonic testing, corners are used for sensitivity calibration in the form of notches, for measuring the sound velocity in the material, and as known reference points during testing. A 90° corner will always reflect incoming waves in the opposite direction due to a double reflection and therefore give a strong echo. This article presents a method for separating the echo from a corner from other echoes and more accurately find the position of the corner. The method is based on analysing the phase of the reflected signal. The proposed method was tested on a steel calibration block and the width of the indication was reduced by up to 50% compared to the amplitude signal. This results in a more accurate positioning of the corner. Using the phase instead of the amplitude will also improve the reliability, since reflections other than from corners will disappear.

20.
Appl Opt ; 51(15): 3036-45, 2012 May 20.
Article in English | MEDLINE | ID: mdl-22614608

ABSTRACT

Three different configurations utilizing polarized short-wave infrared light to classify winter road conditions have been investigated. In the first configuration, polarized broadband light was detected in the specular and backward directions, and the quotient between the detected intensities was used as the classification parameter. Best results were obtained for the SS-configuration. This sensor was shown to be able to distinguish between the smooth road conditions of water and ice from the diffuse road conditions of snow and dry asphalt with a probability of wrong classification as low as 7%. The second sensor configuration was a pure backward architecture utilizing polarized light with two distinct wavelengths. This configuration was shown to be effective for the important problem of distinguishing water from ice with a probability of wrong classification of only 1.5%. The third configuration was a combination of the two previous ones. This combined sensor utilizing bispectral illumination and bidirectional detection resulted in a probability of wrong classification as low as 2% among all four surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...