Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Anesth Analg ; 103(3): 650-7, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16931676

ABSTRACT

Only extreme degrees of endotracheal tube (ETT) narrowing can be detected with monitoring of tidal volume (V(T)) during pressure-controlled ventilation (PCV). To assess the degree of ETT obstruction in PCV and to compare it to V(T) monitoring, we produced 3 levels of partial ETT obstruction in 11 healthy anesthetized piglets using ETTs of 4 different inner diameters (IDs 9.0, 8.0, 7.0, and 6.0 mm). An expiratory flow over volume ((e)-V) curve was plotted and the time constant (tau(e)) at 15% of expiration time (T(e)) was calculated. We also calculated the fractional volume expired during the first 15% of T(e) (V(ex fract,15)) and compared those variables to full expiratory V(T) for each of the 3 obstructions. V(T) monitoring failed to detect ETT narrowing. By contrast, V(ex fract,15) decreased and tau(e) increased significantly with increasing ETT narrowing (for IDs 9.0, 8.0, 7.0, and 6.0, mean V(ex fract,15) was 195, 180, 146, and 134 mL respectively and mean tau(e) was 380, 491, 635, 794 ms for IDs 9.0, 8.0, 7.0, and 6.0 respectively). We conclude that when the elastic recoil that drives (e) is appropriately considered, analysis of (e) and V(ex fract,15) detects partial ETT obstruction during PCV.


Subject(s)
Airway Obstruction/pathology , Respiration, Artificial/methods , Trachea/drug effects , Trachea/pathology , Airway Resistance , Animals , Female , Intubation, Intratracheal , Lung/pathology , Lung/physiology , Male , Pressure , Pulmonary Ventilation , Respiration , Swine
2.
Anesth Analg ; 100(3): 889-893, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15728085

ABSTRACT

If peak inspiratory airway pressure (Ppeak) is used to monitor airway patency, progressive obstruction of the endotracheal tube (ETT) resulting from secretions can go undetected for a prolonged period. The reason is that any increase in Ppeak depends not only on the degree of narrowing but also on the inspiratory flow () rate. Although the impact of narrowing on low inspiratory is small, its decelerating effect on the high expiratory is pronounced and, hence, easily detectable. Dividing the volume-flow curve of a passive expiration into five consecutive segments (slices) and calculating the time constants (tau(Epsilon)) of these slices allows for analyzing whether and how expiratory is impeded by a partial obstruction. In nine piglets, during volume-controlled ventilation, three grades of ETT obstruction were created with an external clamp. In all animals the tau(E) increased with ETT obstruction (mean for the first slice: 550 ms with unobstructed ETT; grade 1: 661; grade 2: 877; and grade 3: 1563 ms, respectively) and this increase was significant with grade 2 and 3 obstruction. Ppeak, by contrast, did not increase significantly (base: 13, grade 1: 14, grade 2: 15 cm H(2)O) until the most severe (grade 3: 20 cm H(2)O) obstruction was created. We conclude that partial obstruction of the ETT can be reliably monitored with the expiratory V signal and has the potential of monitoring ETT narrowing in ventilator-dependent patients independent of the inspiratory pattern applied.


Subject(s)
Airway Resistance , Intubation, Intratracheal/adverse effects , Animals , Female , Male , Pressure , Respiratory Mechanics , Swine
3.
J Appl Physiol (1985) ; 96(3): 879-84, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14578363

ABSTRACT

Part of the energy produced by the heartbeat is transferred to the lung and promotes intrapulmonary gas mixing. It is likely that this transmission in the form of local mechanical disturbances affects and reflects respiratory mechanics. The effects of the cardiogenic oscillations were studied in seven piglets during 7 h of monotonous mechanical ventilation. During the 1st h of ventilation, every heartbeat triggered a noticeable transient increase in lung volume of 14 ml (95% confidence interval = 10-17 ml). After 7 h, the increase in lung volume due to heartbeat significantly decreased to 7 ml (95% confidence interval = 2-9 ml, P < 0.05). During the course of ventilation, overall lung compliance and gas exchange were progressively compromised. We conclude that 1) sufficient mechanical energy is transferred from the beating heart to the lung to increase lung volume, and 2) the ability of the heartbeats to help increase lung volume is reduced during long-term ventilation, which reflects the changes in lung compliance.


Subject(s)
Biological Clocks/physiology , Lung Compliance/physiology , Myocardial Contraction/physiology , Pulmonary Ventilation/physiology , Respiration, Artificial/methods , Animals , Animals, Newborn , Lung Volume Measurements/methods , Swine , Time Factors
4.
Rev. argent. anestesiol ; 43(2): 77-84, abr.-jun. 1985.
Article in Spanish | LILACS | ID: lil-30761

ABSTRACT

Para el manejo de diversos problemas respiratorios, con frecuencia se requiere de ventilación artificial. La selección del modelo de ventilación mecânica a utilizar en estas condiciones es motivo de controversia y difícil de ajustar a reglas generales de manejo. En el presente trabajo, se hace una revisión del estado actual de conocimientos respecto a la ventilación con Presión Positiva Intermitente (IPPV) en su forma convencional y de los efectos hemodinámicos que se le atribuyen. La modalidad de ventilación artificial más recientemente introducida, con Presión Positiva y Alta Frecuencia (HFPPV) es igualmente considerada. Por su mínima interferencia con la función cardiovascular y otras propiedades favorables, esta última forma de ventilación mecánica parece representar una nueva y ventajosa opción para el clínico en el manejo artificial de la ventilación pulmonar


Subject(s)
Respiration, Artificial/methods , Intermittent Positive-Pressure Breathing , Positive-Pressure Respiration
5.
Rev. argent. anestesiol ; 43(2): 85-94, abr.-jun. 1985.
Article in Spanish | LILACS | ID: lil-30764

ABSTRACT

La forma en que los gases se comportan intrapulmonarmente durante la ventilación espontánea o artificial ha despertado siempre un interés especial. Durante la ventilación con Presión Positiva Intermitente (IPPV) en su forma convencional, convección es el mecanismo principal en los segmentos centrales de la vía aérea en tanto que difusión es el evento predominante en bronquios más pequeños y periféricos. En la ventilación artificial con Presión Positiva y Alta Frecuencia (HFPPV) convección parece seguir siendo un mecanismo importante. Sin embargo, las propiedades funcionales que el flujo de gas tiene al llegar a la traquea por este método promueven la aparición de mayor turbulencia en la vía aérea y favorecen la dispersión molecular del gas. De esta forma, la mezcla y distribución intrapulmonar de los gases de la respiración es notablemente facilitada por HFPPV (técnicas de "lavado" pulmonar de Nitrógeno) en comparación con otros métodos de apoyo ventilatorio mecánico. A nivel bronquiolar el gas se comporta de manera similar a lo que ocurre en la ventilación espontánea. Evidentemente, el concepto convencional de como se desarrolla la ventilación alveolar durante la ventilación mecánica no es válido cuando se usan sistemas de baja compresión y alta frecuencia


Subject(s)
Intermittent Positive-Pressure Ventilation , Positive-Pressure Respiration , Pulmonary Gas Exchange
6.
Rev. argent. anestesiol ; 43(2): 95-103, abr.-jun. 1985. tab
Article in Spanish | LILACS | ID: lil-30766

ABSTRACT

La terapéutica convencional en presencia de cualquier forma de Insuficiencia Respiratoria está dirigida siempre hacia el apoyo rápido, eficaz y seguro de la función cardiovascular y el recambio de gases. Las bases funcionales que conforman el nuevo concepto de ventilación pulmonar con Presión Positiva y Alta Frecuencia (HFPPV) están diseñadas para favorecer con eficacia estas dos importantes condiciones de manejo. Hasta la fecha, su aplicación clínica ha sido evaluada en multitud de circunstancias con resultados muy estimulantes particularmente en laringoscopías, broncoscopías, procedimientos anestésico-quirúrgicos, pediatría y medicina crítica donde se ha visto que ofrece un apoyo respiratorio adecuado. Con su empleo, se han observado además algunas ventajas de considerable significancia sugieren que en el futuro este método de ventilación será de aplicación rutinaria en la práctica médica


Subject(s)
Humans , Positive-Pressure Respiration , Respiration, Artificial/methods , Ventilators, Mechanical , Intermittent Positive-Pressure Ventilation
SELECTION OF CITATIONS
SEARCH DETAIL
...