Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Shock ; 59(2): 300-310, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36730842

ABSTRACT

ABSTRACT: Major burn injury is associated with systemic hyperinflammatory and oxidative stresses that encompass the wound, vascular, and pulmonary systems that contribute to complications and poor outcomes. These stresses are exacerbated if there is a combined burn and inhalation (B+I) injury, which leads to increases in morbidity and mortality. Nuclear factor-erythroid-2-related factor (NRF2) is a transcription factor that functions to maintain homeostasis during stress, in part by modulating inflammation and oxidative injury. We hypothesized that the NRF2-mediated homeostasis after burn alone and combined B-I injury is insufficient, but that pharmacological activation of the NRF2 pathway has the potential to reduce/reverse acute hyper inflammatory responses. We found that, after burn and B+I injury, Nrf2 -/- mice have higher mortality and exhibit greater pulmonary edema, vascular permeability, and exacerbated pulmonary and systemic proinflammatory responses compared with injured wild-type (WT) controls. Transcriptome analysis of lung tissue revealed specific Nrf2 -dependent dysregulated immune pathways after injury. In WT mice, we observed that B+I injury induces cytosolic, but not nuclear, accumulation of NRF2 protein in the lung microenvironment compared with sham-injured controls. Bardoxolone methyl (CDDO-Me)-containing microparticles (CDDO-MPs) were developed that allow for dilution in saline and stable release of CDDO-Me. When delivered intraperitoneally into mice 1 hour after B+I injury, CDDO-MPs significantly reduced mortality and cytokine dysfunction compared with untreated B-I animals. These data implicate the role of NRF2 regulation of pulmonary and systemic immune dysfunction after burn and B+I injury, and also a deficiency in controlling immune dysregulation. Selectively activating the NRF2 pathway may improve clinical outcomes in burn and B+I patients.


Subject(s)
Burns , NF-E2-Related Factor 2 , Animals , Mice , Inflammation/metabolism , Lung/metabolism , NF-E2-Related Factor 2/metabolism
2.
PLoS One ; 8(11): e80403, 2013.
Article in English | MEDLINE | ID: mdl-24260386

ABSTRACT

The ultimate goal of gene therapy for sickle cell anemia (SCA) is an improved phenotype for the patient. In this study, we utilized bone marrow from a sickle cell patient as a model of disease in an in vitro setting for the hyperactive Sleeping Beauty transposon gene therapy system. We demonstrated that mature sickle red blood cells containing hemoglobin-S and sickling in response to metabisulfite can be generated in vitro from SCA bone marrow. These cells showed the characteristic morphology and kinetics of hemoglobin-S polymerization, which we quantified using video microscopy and imaging cytometry. Using video assessment, we showed that delivery of an IHK-ß(T87Q) antisickling globin gene by Sleeping Beauty via nucleofection improves metrics of sickling, decreasing percent sickled from 53.2 ± 2.2% to 43.9 ± 2.0%, increasing the median time to sickling from 8.5 to 9.6 min and decreasing the maximum rate of sickling from 2.3 x 10(-3) sickling cells/total cells/sec in controls to 1.26 x 10(-3) sickling cells/total cells/sec in the IHK-ß(T87Q)-globin group (p < 0.001). Using imaging cytometry, the percentage of elongated sickled cells decreased from 34.8 ± 4.5% to 29.5 ± 3.0% in control versus treated (p < 0.05). These results support the potential use of Sleeping Beauty as a clinical gene therapy vector and provide a useful tool for studying sickle red blood cells in vitro.


Subject(s)
Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , Antigens, CD34/metabolism , DNA Transposable Elements/genetics , Erythrocytes/metabolism , Erythrocytes/physiology , beta-Globins/genetics , Anemia, Sickle Cell/metabolism , Bone Marrow/metabolism , Bone Marrow/physiology , Cell Differentiation/genetics , Genetic Therapy/methods , Genetic Vectors/genetics , Hemoglobin, Sickle/genetics , Hemoglobin, Sickle/metabolism , Humans , Transgenes/genetics
3.
PLoS One ; 6(12): e29110, 2011.
Article in English | MEDLINE | ID: mdl-22216176

ABSTRACT

Gene therapy for sickle cell disease will require efficient delivery of a tightly regulated and stably expressed gene product to provide an effective therapy. In this study we utilized the non-viral Sleeping Beauty (SB) transposon system using the SB100X hyperactive transposase to transduce human cord blood CD34(+) cells with DsRed and a hybrid IHK-ß-globin transgene. IHK transduced cells were successfully differentiated into multiple lineages which all showed transgene integration. The mature erythroid cells had an increased ß-globin to γ-globin ratio from 0.66±0.08 to 1.05±0.12 (p=0.05), indicating expression of ß-globin from the integrated SB transgene. IHK-ß-globin mRNA was found in non-erythroid cell types, similar to native ß-globin mRNA that was also expressed at low levels. Additional studies in the hematopoietic K562 cell line confirmed the ability of cHS4 insulator elements to protect DsRed and IHK-ß-globin transgenes from silencing in long-term culture studies. Insulated transgenes had statistically significant improvement in the maintenance of long term expression, while preserving transgene regulation. These results support the use of Sleeping Beauty vectors in carrying an insulated IHK-ß-globin transgene for gene therapy of sickle cell disease.


Subject(s)
Erythrocytes/metabolism , Hematopoietic Stem Cells/metabolism , Transposases/physiology , beta-Globins/metabolism , Cell Lineage , Gene Silencing , Humans , K562 Cells , RNA, Messenger/genetics , Transgenes , beta-Globins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...