Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 15(682): eadd6373, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36753563

ABSTRACT

Peanut-induced allergy is an immunoglobulin E (IgE)-mediated type I hypersensitivity reaction that manifests symptoms ranging from local edema to life-threatening anaphylaxis. Although there are treatments for symptoms in patients with allergies resulting from allergen exposure, there are few preventive therapies other than strict dietary avoidance or oral immunotherapy, neither of which are successful in all patients. We have previously designed a covalent heterobivalent inhibitor (cHBI) that binds in an allergen-specific manner as a preventive for allergic reactions. Building on previous in vitro testing, here, we developed a humanized mouse model to test cHBI efficacy in vivo. Nonobese diabetic-severe combined immunodeficient γc-deficient mice expressing transgenes for human stem cell factor, granulocyte-macrophage colony-stimulating factor, and interleukin-3 developed mature functional human mast cells in multiple tissues and displayed robust anaphylactic reactions when passively sensitized with patient-derived IgE monoclonal antibodies specific for peanut Arachis hypogaea 2 (Ara h 2). The allergic response in humanized mice was IgE dose dependent and was mediated by human mast cells. Using this humanized mouse model, we showed that cHBI prevented allergic reactions for more than 2 weeks when administered before allergen exposure. cHBI also prevented fatal anaphylaxis and attenuated allergic reactions when administered shortly after the onset of symptoms. cHBI impaired mast cell degranulation in vivo in an allergen-specific manner. cHBI rescued the mice from lethal anaphylactic responses during oral Ara h 2 allergen-induced anaphylaxis. Together, these findings suggest that cHBI has the potential to be an effective preventative for peanut-specific allergic responses in patients.


Subject(s)
Anaphylaxis , Peanut Hypersensitivity , Humans , Mice , Animals , Anaphylaxis/prevention & control , Arachis , Allergens , Immunoglobulin E/metabolism , Peanut Hypersensitivity/prevention & control
2.
Ann Allergy Asthma Immunol ; 129(2): 231-240.e2, 2022 08.
Article in English | MEDLINE | ID: mdl-35405356

ABSTRACT

BACKGROUND: Despite the high prevalence of allergic asthma, currently, avoidance of the responsible allergens, which is nearly impossible for allergens such as house dust mite (HDM), remains among the most effective treatment. Consequently, determination of the immunogenic epitopes of allergens will aid in developing a better understanding of the condition for diagnostic and therapeutic purposes. Current methods of epitope identification, however, only evaluate immunoglobulin E-epitope binding interactions, which is not directly related to epitope immunogenicity. OBJECTIVE: To determine and rank the immunogenicity of the epitopes of major HDM allergen, Der p 2. METHODS: We performed degranulation assays with RBL-SX38 cells primed using patient plasma and challenged with nanoallergens which multivalently displayed epitopes to study the relative immunogenicity of various epitopes of Der p 2. Nanoallergens were used to evaluate epitopes individually or in combination. RESULTS: When evaluated using 3 patient samples, 3 epitopes in 2 distal regions of Der p 2 were identified as highly immunogenic when presented in combination, whereas no individual epitope triggered relevant degranulation. One of the epitopes (69-DPNACHYMKCPLVKGQQY-86) was identified to be cooperatively immunogenic when combined with other epitopes. CONCLUSION: Our study highlights the importance of conformational epitopes in HDM-related allergies. This study also provides further evidence of the versatility of nanoallergens and their value for functional characterization of allergy epitopes, by ranking the Der p 2 epitopes according to immunogenicity. We believe that nanoallergens, by aiding in identification and understanding of immunogenic epitopes, will provide a better understanding of the manifestation of the allergic condition and potentially aid in developing new treatments.


Subject(s)
Antigens, Dermatophagoides , Pyroglyphidae , Allergens , Animals , Arthropod Proteins , Dust , Epitopes/chemistry , Humans
3.
J Hematol Oncol ; 13(1): 145, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33138841

ABSTRACT

BACKGROUND: Drug-loaded nanoparticles have established their benefits in the fight against multiple myeloma; however, ligand-targeted nanomedicine has yet to successfully translate to the clinic due to insufficient efficacies reported in preclinical studies. METHODS: In this study, liposomal nanoparticles targeting multiple myeloma via CD38 or CD138 receptors are prepared from pre-synthesized, purified constituents to ensure increased consistency over standard synthetic methods. These nanoparticles are then tested both in vitro for uptake to cancer cells and in vivo for accumulation at the tumor site and uptake to tumor cells. Finally, drug-loaded nanoparticles are tested for long-term efficacy in a month-long in vivo study by tracking tumor size and mouse health. RESULTS: The targeted nanoparticles are first optimized in vitro and show increased uptake and cytotoxicity over nontargeted nanoparticles, with CD138-targeting showing superior enhancement over CD38-targeted nanoparticles. However, biodistribution and tumor suppression studies established CD38-targeted nanoparticles to have significantly increased in vivo tumor accumulation, tumor cell uptake, and tumor suppression over both nontargeted and CD138-targeted nanoparticles due to the latter's poor selectivity. CONCLUSION: These results both highlight a promising cancer treatment option in CD38-targeted nanoparticles and emphasize that targeting success in vitro does not necessarily translate to success in vivo.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , Antibiotics, Antineoplastic/administration & dosage , Doxorubicin/administration & dosage , Drug Delivery Systems , Liposomes/metabolism , Multiple Myeloma/drug therapy , Syndecan-1/metabolism , ADP-ribosyl Cyclase 1/chemistry , Animals , Antibiotics, Antineoplastic/pharmacokinetics , Cell Line, Tumor , Doxorubicin/pharmacokinetics , Humans , Liposomes/chemistry , Male , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Docking Simulation , Multiple Myeloma/metabolism , Peptides/chemistry , Peptides/metabolism , Syndecan-1/chemistry , Tissue Distribution
4.
Annu Rev Anal Chem (Palo Alto Calif) ; 12(1): 69-88, 2019 06 12.
Article in English | MEDLINE | ID: mdl-30811215

ABSTRACT

As our ability to synthesize and modify nanoobjects has improved, efforts to explore nanotechnology for diagnostic purposes have gained momentum. The variety of nanoobjects, especially those with polyvalent properties, displays a wide range of practical and unique properties well suited for applications in various diagnostics. This review briefly covers the broad scope of multivalent nanoobjects and their use in diagnostics, ranging from ex vivo assays and biosensors to in vivo imaging. The nanoobjects discussed here include silica nanoparticles, gold nanoparticles, quantum dots, carbon dots, fullerenes, polymers, dendrimers, liposomes, nanowires, and nanotubes. In this review, we describe recent reports of novel applications of these various nanoobjects, particularly as polyvalent entities designed for diagnostics.


Subject(s)
Biosensing Techniques/methods , Nanostructures/analysis , Nanotechnology/methods , Precision Medicine/methods , Theranostic Nanomedicine/methods , Animals , Dendrimers/analysis , Fullerenes/analysis , Gold/analysis , Humans , Liposomes/analysis , Nanoparticles/analysis , Nanotubes/analysis , Nanowires/analysis , Polymers/analysis , Quantum Dots/analysis , Silicon Dioxide/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...