Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
FASEB J ; 38(14): e23837, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39031536

ABSTRACT

Bone morphogenetic protein 15 (BMP15) is an oocyte-specific growth factor important for successful female reproduction in mammals. While mutations in BMP15/Bmp15 cause ovulatory deficiency and/or infertility in certain mammalian species, loss of bmp15 in zebrafish, a continuous spawner and the only bmp15 knockout model in fish to date, results in complete arrest of follicle development and later female-to-male sex reversal, preventing to examine effects on ovulation/fertilization. Here, we used Atlantic salmon, a seasonal spawner, and generated bmp15 mutants to investigate ovarian development and fertility. Histological and morphometric analyses revealed that in biallelic frameshift (bmp15 fs/fs) mutant ovaries, folliculogenesis started earlier, resulting in an advanced development compared to wild-type (WT) controls, accompanied by a weaker expression of the (early) oocyte-specific factor figla. This precocious ovarian development was followed in bmp15 fs/fs females by enhanced follicle atresia during vitellogenic stages. Although genes involved in steroid synthesis and signaling (star, cyp11b, cyp17a1 and esr1) were dramatically higher in late vitellogenic bmp15 fs/fs mutant ovaries, estradiol-17ß plasma levels were lower than in WT counterparts, potentially reflecting compensatory changes at the level of ovarian gene expression. At spawning, bmp15 fs/fs females displayed lower gonado-somatic index values and reduced oocyte diameter, and the majority (71.4%), showed mature non-ovulating ovaries with a high degree of atresia. The remaining (28.6%) females spawned eggs but they either could not be fertilized or, upon fertilization, showed severe malformations and embryonic mortality. Our results show that Bmp15 is required for proper follicle recruitment and growth and later ovulatory success in Atlantic salmon, providing an alternative candidate target to induce sterility in farmed salmon. Moreover, since loss of bmp15 in salmon, in contrast to zebrafish, does not result in female-to-male sex change, this is the first mutant model in fish allowing further investigations on Bmp15-mediated functions in the ovulatory period.


Subject(s)
Bone Morphogenetic Protein 15 , Ovulation , Salmo salar , Animals , Bone Morphogenetic Protein 15/genetics , Bone Morphogenetic Protein 15/metabolism , Female , Salmo salar/metabolism , Salmo salar/genetics , Salmo salar/growth & development , Ovary/metabolism , Ovarian Follicle/metabolism , Oocytes/metabolism , Male , Fish Proteins/genetics , Fish Proteins/metabolism , Seasons
2.
Endocrinology ; 165(4)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38298132

ABSTRACT

Early puberty poses a significant challenge for male Atlantic salmon in aquaculture due to its negative impact on growth and welfare. The regulation of puberty in vertebrates involves 2 key reproductive hormones: follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and their gonadal receptors. In male mice lacking FSH receptor, testes size is reduced, but fertility is maintained, while medaka and zebrafish with a disrupted fshr gene exhibit near normal testis size and fertility. In these fishes both Fsh and Lh are present during puberty and Lh may rescue fertility, while in salmonid fish only Fsh is present in the circulation during puberty. Using CRISPR-Cas9, we produced crispants with a high prevalence of fshr mutations at the target site, which remained fertile, although more than half showed a testis development deviating from wild-type (wt) males. Crossing out these F0 crispants to each other produced a viable F1 generation showing frameshift (fshr-/-) or in-frame mutations (fshrif/if). Nearly all wt males matured while all fshr-/- males remained immature with small testes containing A spermatogonia as the furthest developed germ cell type and prepubertal plasma androgen levels. Also, the pituitary transcript levels of gnrhr2bba and lhb, but not for fshb, were reduced in the fshr-/- males compared with maturing males. More than half of the fshrif/if mutant males showed no or a delayed maturation. In conclusion, Atlantic salmon show the unique characteristic that loss of Fshr function alone results in male infertility, offering new opportunities to control precocious puberty or fertility in salmon.


Subject(s)
Receptors, FSH , Salmo salar , Male , Animals , Mice , Receptors, FSH/genetics , Receptors, FSH/metabolism , Salmo salar/genetics , Salmo salar/metabolism , Zebrafish/genetics , Sexual Maturation/genetics , Follicle Stimulating Hormone/metabolism , Testis/metabolism
3.
Front Endocrinol (Lausanne) ; 13: 826920, 2022.
Article in English | MEDLINE | ID: mdl-35370944

ABSTRACT

Precocious male maturation causes reduced welfare and increased production costs in Atlantic salmon (Salmo salar) aquaculture. The pituitary produces and releases follicle-stimulating hormone (Fsh), the gonadotropin triggering puberty in male salmonids. However, little is known about how Fsh production is regulated in Atlantic salmon. We examined, in vivo and ex vivo, transcriptional changes of gonadotropin-related genes accompanying the initial steps of testis maturation, in pituitaries of males exposed to photoperiod and temperature conditions promoting maturation (constant light and 16°C). Pituitary fshb, lhb and gnrhr2bba transcripts increased in vivo in maturing males (gonado-somatic index > 0.1%). RNA sequencing (RNAseq) analysis using pituitaries from genetically similar males carrying the same genetic predisposition to mature, but differing by responding or not responding to stimulatory environmental conditions, revealed 144 differentially expressed genes, ~2/3rds being up-regulated in responders, including fshb and other pituitary hormones, steroid-related and other puberty-associated transcripts. Functional enrichment analyses confirmed gene involvement in hormone/steroid production and gonad development. In ex vivo studies, whole pituitaries were exposed to a selection of hormones and growth factors. Gonadotropin-releasing hormone (Gnrh), 17ß-estradiol (E2) and 11-ketotestosterone (11-KT) up-regulated gnrhr2bba and lhb, while fshb was up-regulated by Gnrh but down-regulated by 11-KT in pituitaries from immature males. Also pituitaries from maturing males responded to Gnrh and sex steroids by increased gnrhr2bba and lhb transcript levels, but fshb expression remained unchanged. Growth factors (inhibin A, activin A and insulin-like growth factor 1) did not change gnrhr2bba, lhb or fshb transcript levels in pituitaries either from immature or maturing males. Additional pituitary ex vivo studies on candidates identified by RNAseq showed that these transcripts were preferentially regulated by Gnrh and sex steroids, but not by growth factors, and that Gnrh/sex steroids were less effective when incubating pituitaries from maturing males. Our results suggest that a yet to be characterized mechanism up-regulating fshb expression in the salmon pituitary is activated in response to stimulatory environmental conditions prior to morphological signs of testis maturation, and that the transcriptional program associated with this mechanism becomes unresponsive or less responsive to most stimulators ex vivo once males had entered pubertal developmental in vivo.


Subject(s)
Salmo salar , Animals , Gene Expression , Gonadotropins/metabolism , Gonadotropins/pharmacology , Gonadotropins, Pituitary/genetics , Male , Salmo salar/genetics , Salmo salar/metabolism , Sexual Maturation/genetics
4.
BMC Genomics ; 22(1): 563, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34294050

ABSTRACT

BACKGROUND: New breeding technologies (NBT) using CRISPR/Cas9-induced homology directed repair (HDR) has the potential to expedite genetic improvement in aquaculture. The long generation time in Atlantic salmon makes breeding an unattractive solution to obtain homozygous mutants and improving the rates of perfect HDR in founder (F0) fish is thus required. Genome editing can represent small DNA changes down to single nucleotide replacements (SNR). This enables edits such as premature stop codons or single amino acid changes and may be used to obtain fish with traits favorable to aquaculture, e.g. disease resistance. A method for SNR has not yet been demonstrated in salmon. RESULTS: Using CRISPR/Cas9 and asymmetrical ODNs, we were able to perform precise SNR and introduce a premature stop codon in dnd in F0 salmon. Deep sequencing demonstrated up to 59.2% efficiency in single embryos. In addition, using the same asymmetrical ODN design, we inserted a FLAG element into slc45a2 and dnd, showing high individual perfect HDR efficiencies (up to 36.7 and 32.7%, respectively). CONCLUSIONS: In this work, we demonstrate that precise SNR and knock-in (KI) can be performed in F0 salmon embryos using asymmetrical oligonucleotide (ODN) donors. We suggest that HDR-induced SNR can be applied as a powerful NBT, allowing efficient introgression of favorable alleles and bypassing challenges associated with traditional selective breeding.


Subject(s)
CRISPR-Cas Systems , Salmo salar , Alleles , Animals , CRISPR-Cas Systems/genetics , Gene Editing , Nucleotides , Oligonucleotides , Salmo salar/genetics
5.
Front Cell Dev Biol ; 9: 657192, 2021.
Article in English | MEDLINE | ID: mdl-33942021

ABSTRACT

Entering meiosis strictly depends on stimulated by retinoic acid 8 (Stra8) gene function in mammals. This gene is missing in a number of fish species, including medaka and zebrafish, but is present in the majority of fishes, including Atlantic salmon. Here, we have examined the effects of removing stra8 on male fertility in Atlantic salmon. As in mammals, stra8 expression was restricted to germ cells in the testis, transcript levels increased during the start of puberty, and decreased when blocking the production of retinoic acid. We targeted the salmon stra8 gene with two gRNAs one of these were highly effective and produced numerous mutations in stra8, which led to a loss of wild-type (WT) stra8 expression in F0 salmon testis. In maturing stra8 crispants, the spermatogenetic tubuli were partially disorganized and displayed a sevenfold increase in germ cell apoptosis, in particular among type B spermatogonia and spermatocytes. The production of spermatogenic cysts, on the other hand, increased in maturing stra8 crispants. Gene expression analysis revealed unchanged (lin28a, ret) or reduced levels (egr1, dusp4) of transcripts associated with undifferentiated spermatogonia. Decreased expression was recorded for some genes expressed in differentiating spermatogonia including dmrt1 and ccnd2 or in spermatocytes, such as ccna1. Different from Stra8-deficient mammals, a large number of germ cells completed spermatogenesis, sperm was produced and fertilization rates were similar in WT and crispant males. While loss of stra8 increased germ cell apoptosis during salmon spermatogenesis, crispants compensated this cell loss by an elevated production of spermatogenic cysts, and were able to produce functional sperm. It appears that also in a fish species with a stra8 gene in the genome, the critical relevance this gene has attained for mammalian spermatogenesis is not yet given, although detrimental effects of the loss of stra8 were clearly visible during maturation.

7.
Commun Biol ; 4(1): 204, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33589679

ABSTRACT

Pituitary hormones can use local signaling molecules to regulate target tissue functions. In adult zebrafish testes, follicle-stimulating hormone (Fsh) strongly increases the production of insulin-like 3 (Insl3), a Leydig cell-derived growth factor found in all vertebrates. Little information is available regarding Insl3 function in adult spermatogenesis. The Insl3 receptors Rxfp2a and 2b were expressed by type A spermatogonia and Sertoli and myoid cells, respectively, in zebrafish testis tissue. Loss of insl3 increased germ cell apoptosis in males starting at 9 months of age, but spermatogenesis appeared normal in fully fertile, younger adults. Insl3 changed the expression of 409 testicular genes. Among others, retinoic acid (RA) signaling was up- and peroxisome proliferator-activated receptor gamma (Pparg) signaling was down-regulated. Follow-up studies showed that RA and Pparg signaling mediated Insl3 effects, resulting in the increased production of differentiating spermatogonia. This suggests that Insl3 recruits two locally active nuclear receptor pathways to implement pituitary (Fsh) stimulation of spermatogenesis.


Subject(s)
Insulin/metabolism , Proteins/metabolism , Sertoli Cells/metabolism , Spermatogenesis , Spermatogonia/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Apoptosis , Gene Expression Regulation, Developmental , HEK293 Cells , Humans , Insulin/genetics , Male , PPAR gamma/genetics , PPAR gamma/metabolism , Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Sertoli Cells/drug effects , Signal Transduction , Spermatogenesis/drug effects , Spermatogonia/drug effects , Spermatogonia/pathology , Transcriptome , Tretinoin/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics
8.
Sci Rep ; 10(1): 18042, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33093479

ABSTRACT

Genetic introgression of escaped farmed Atlantic salmon (Salmo salar) into wild populations is a major environmental concern for the salmon aquaculture industry. Using sterile fish in commercial aquaculture operations is, therefore, a sustainable strategy for bio-containment. So far, the only commercially used methodology for producing sterile fish is triploidization. However, triploid fish are less robust. A novel approach in which to achieve sterility is to produce germ cell-free salmon, which can be accomplished by knocking out the dead-end (dnd) gene using CRISPR-Cas9. The lack of germ cells in the resulting dnd crispants, thus, prevents reproduction and inhibits subsequent large-scale production of sterile fish. Here, we report a rescue approach for producing germ cells in Atlantic salmon dnd crispants. To achieve this, we co-injected the wild-type (wt) variant of salmon dnd mRNA together with CRISPR-Cas9 constructs targeting dnd into 1-cell stage embryos. We found that rescued one-year-old fish contained germ cells, type A spermatogonia in males and previtellogenic primary oocytes in females. The method presented here opens a possibility for large-scale production of germ-cell free Atlantic salmon offspring through the genetically sterile broodstock which can pass the sterility trait on the next generation.


Subject(s)
Fisheries , Genetic Introgression/genetics , Germ Cells , Infertility/genetics , RNA-Binding Proteins/genetics , Salmo salar/embryology , Salmo salar/genetics , Animals , CRISPR-Cas Systems , Female , Male , Oocytes , Quantitative Trait, Heritable , Spermatogonia , Triploidy
9.
BMC Genomics ; 21(1): 99, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32000659

ABSTRACT

BACKGROUND: Sustainability challenges are currently hampering an increase in salmon production. Using sterile salmon can solve problems with precocious puberty and genetic introgression from farmed escapees to wild populations. Recently sterile salmon was produced by knocking out the germ cell-specific dead end (dnd). Several approaches may be applied to inhibit Dnd function, including gene knockout, knockdown or immunization. Since it is challenging to develop a successful treatment against a gene product already existing in the body, alternative targets are being explored. Germ cells are surrounded by, and dependent on, gonadal somatic cells. Targeting genes essential for the survival of gonadal somatic cells may be good alternative targets for sterility treatments. Our aim was to identify and characterize novel germ cell and gonadal somatic factors in Atlantic salmon. RESULTS: We have for the first time analysed RNA-sequencing data from germ cell-free (GCF)/dnd knockout and wild type (WT) salmon testis and searched for genes preferentially expressed in either germ cells or gonadal somatic cells. To exclude genes with extra-gonadal expression, our dataset was merged with available multi-tissue transcriptome data. We identified 389 gonad specific genes, of which 194 were preferentially expressed within germ cells, and 11 were confined to gonadal somatic cells. Interestingly, 5 of the 11 gonadal somatic transcripts represented genes encoding secreted TGF-ß factors; gsdf, inha, nodal and two bmp6-like genes, all representative vaccine targets. Of these, gsdf and inha had the highest transcript levels. Expression of gsdf and inha was further confirmed to be gonad specific, and their spatial expression was restricted to granulosa and Sertoli cells of the ovary and testis, respectively. Finally, we show that inha expression increases with puberty in both ovary and testis tissue, while gsdf expression does not change or decreases during puberty in ovary and testis tissue, respectively. CONCLUSIONS: This study contributes with transcriptome data on salmon testis tissue with and without germ cells. We provide a list of novel and known germ cell- and gonad somatic specific transcripts, and show that the expression of two highly active gonadal somatic secreted TGF-ß factors, gsdf and inha, are located within granulosa and Sertoli cells.


Subject(s)
Gene Expression Profiling/veterinary , RNA-Binding Proteins/genetics , Salmo salar/genetics , Testis/chemistry , Animals , Fish Proteins/genetics , Gene Expression Regulation , Gene Knockout Techniques , Gene Regulatory Networks , Male , Organ Specificity , Sequence Analysis, RNA/veterinary , Spermatozoa/chemistry , Testis/cytology
10.
Sci Rep ; 10(1): 409, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31941961

ABSTRACT

Precise gene editing such as CRISPR/Cas9-mediated homology directed repair (HDR) can increase our understanding of gene function and improve traits of importance for aquaculture. This fine-tuned technology has not been developed for farmed fish including Atlantic salmon. We performed knock-in (KI) of a FLAG element in the slc45a2 gene in salmon using sense (S), anti-sense (AS) and double-stranded (ds) oligodeoxynucleotide (ODN) templates with short (24/48/84 bp) homology arms. We show in vivo ODN integration in almost all the gene edited animals, and demonstrate perfect HDR rates up to 27% in individual F0 embryos, much higher than reported previously in any fish. HDR efficiency was dependent on template concentration, but not homology arm length. Analysis of imperfect HDR variants suggest that repair occurs by synthesis-dependent strand annealing (SDSA), as we show for the first time in any species that indel location is dependent on template polarity. Correct ODN polarity can be used to avoid 5'-indels interrupting the reading frame of an inserted sequence and be of importance for HDR template design in general.


Subject(s)
CRISPR-Cas Systems , DNA Breaks, Double-Stranded , Fish Proteins/metabolism , INDEL Mutation , Membrane Transport Proteins/metabolism , Recombinational DNA Repair , Salmo salar/genetics , Animals , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Fish Proteins/antagonists & inhibitors , Fish Proteins/genetics , Gene Editing , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Salmo salar/embryology
11.
Acta Neuropathol Commun ; 7(1): 55, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30971321

ABSTRACT

Melanoma patients carry a high risk of developing brain metastases, and improvements in survival are still measured in weeks or months. Durable disease control within the brain is impeded by poor drug penetration across the blood-brain barrier, as well as intrinsic and acquired drug resistance. Augmented mitochondrial respiration is a key resistance mechanism in BRAF-mutant melanomas but, as we show in this study, this dependence on mitochondrial respiration may also be exploited therapeutically. We first used high-throughput pharmacogenomic profiling to identify potentially repurposable compounds against BRAF-mutant melanoma brain metastases. One of the compounds identified was ß-sitosterol, a well-tolerated and brain-penetrable phytosterol. Here we show that ß-sitosterol attenuates melanoma cell growth in vitro and also inhibits brain metastasis formation in vivo. Functional analyses indicated that the therapeutic potential of ß-sitosterol was linked to mitochondrial interference. Mechanistically, ß-sitosterol effectively reduced mitochondrial respiratory capacity, mediated by an inhibition of mitochondrial complex I. The net result of this action was increased oxidative stress that led to apoptosis. This effect was only seen in tumor cells, and not in normal cells. Large-scale analyses of human melanoma brain metastases indicated a significant role of mitochondrial complex I compared to brain metastases from other cancers. Finally, we observed completely abrogated BRAF inhibitor resistance when vemurafenib was combined with either ß-sitosterol or a functional knockdown of mitochondrial complex I. In conclusion, based on its favorable tolerability, excellent brain bioavailability, and capacity to inhibit mitochondrial respiration, ß-sitosterol represents a promising adjuvant to BRAF inhibitor therapy in patients with, or at risk for, melanoma brain metastases.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Melanoma/genetics , Melanoma/metabolism , Mitochondria/drug effects , Proto-Oncogene Proteins B-raf/genetics , Sitosterols/administration & dosage , Animals , Apoptosis/drug effects , Brain Neoplasms/complications , Cell Line, Tumor , Drug Repositioning , Female , Humans , Melanoma/complications , Mice, Transgenic , Mitochondria/metabolism , Mutation , Oxidative Stress/drug effects , Transcriptome
12.
Sci Rep ; 8(1): 1912, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29382956

ABSTRACT

Vgll3 is linked to age at maturity in Atlantic salmon (Salmo salar). However, the molecular mechanisms involving Vgll3 in controlling timing of puberty as well as relevant tissue and cell types are currently unknown. Vgll3 and the associated Hippo pathway has been linked to reduced proliferation activity in different tissues. Analysis of gene expression reveals for the first time that vgll3 and several members of the Hippo pathway were down-regulated in salmon testis during onset of puberty and remained repressed in maturing testis. In the gonads, we found expression in Sertoli and granulosa cells in males and females, respectively. We hypothesize that vgll3 negatively regulates Sertoli cell proliferation in testis and therefore acts as an inhibitor of pubertal testis growth. Gonadal expression of vgll3 is located to somatic cells that are in direct contact with germ cells in both sexes, however our results indicate sex-biased regulation of vgll3 during puberty.


Subject(s)
Protein Serine-Threonine Kinases/metabolism , Salmo salar/metabolism , Sertoli Cells/metabolism , Testis/metabolism , Transcription Factors/metabolism , Animals , Cell Proliferation/physiology , Female , Gene Expression/physiology , Germ Cells/metabolism , Granulosa Cells/metabolism , Male , Sex Differentiation/physiology , Sexual Maturation/physiology
13.
Mol Cancer Res ; 16(1): 78-89, 2018 01.
Article in English | MEDLINE | ID: mdl-29021233

ABSTRACT

Transcripts derived from the PTEN pseudogene (PTENP1) function as decoys to adsorb miRNAs targeting the PTEN tumor suppressor for degradation, and PTENP1 upregulation is known to inhibit growth in preclinical cancer models. Here, PTENP1 3'UTR transduction influences PTEN, AKT/mTOR signaling, and tumor progression in estrogen receptor (ER)-positive and -negative breast cancer cells. PTENP1 upregulation decreases PTEN gene expression in the ER-positive MCF7 and T47D human breast carcinoma cells and accelerates MCF7 tumor growth in vivo Of note, PTENP1 transduction significantly decreases ERα (ESR1) mRNA and protein levels in MCF7 xenografts with a concomitant increase in hsa-miR-26a, a miRNA known to target ESR1 In the ER-negative MDA-MB-231 and C3HBA breast cancer cells, upregulation of PTENP1 increases PTEN gene expression with no influence on hsa-miR-26a, ESR1, or ERα expression. While PTENP1 transduction did not influence the growth rate of human MDA-MB-231 xenografts, PTENP1 upregulation profoundly reduces its metastatic propensity. Furthermore, PTENP1 significantly inhibits the growth rate of ER-negative C3HBA murine breast cancer xenografts. PTENP1 transduction had no influence on doxorubicin cytotoxicity in ER-positive MCF7 cells but an increase in doxorubicin sensitivity was observed in the ER-negative MDA-MB-231 cells. In summary, while PTENP1 upregulation decreased PTEN transcript levels and stimulated the growth of ER-positive breast cancers, increased PTEN transcript levels and inhibited tumor progression was observed in the ER-negative cells.Implications: This report highlights the profound biological activity of PTENP1 in breast cancer, which is dictated by the hormone receptor status. Mol Cancer Res; 16(1); 78-89. ©2017 AACR.


Subject(s)
Breast Neoplasms/genetics , Estrogen Receptor alpha/genetics , MicroRNAs/genetics , PTEN Phosphohydrolase/genetics , 3' Untranslated Regions , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Heterografts , Humans , Mammary Neoplasms, Experimental , Mice , Mice, Inbred C3H , Mice, Inbred NOD , Mice, SCID , PTEN Phosphohydrolase/biosynthesis , Pseudogenes , Signal Transduction
14.
Sci Rep ; 7(1): 12584, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28974703

ABSTRACT

In all vertebrates studied so far, germ cells are not required for pubertal maturation of the gonadal steroidogenic system, subsequent development of secondary sex characteristics and reproductive behavior. To explore if the absence of germ cells affects puberty or growth in Atlantic salmon, germ cell-free (GCF), dnd knockout and wild type (WT) postsmolts were stimulated to enter puberty. No GCF fish entered puberty, whereas 66.7% (males) and 30% (females) WT fish completed or entered puberty, respectively. Expression of genes related to steroidogenesis (star, cyp17a1, cyp11ß, cyp19a1a), gonadal somatic cells (insl3, amh, igf3), oocytes (bmp15), gonadotropin receptors (fshr, lhcgr), and pituitary gonadotropic cells (fshb, lhb, gnrhr4) showed an immature status and failure to up-regulate gonadal sex steroid production in male and female GCF fish was also reflected in low or undetectable plasma sex steroids (11-ketotestosterone, estradiol-17ß and testosterone). A gender difference (high in females, low in males) was found in the expression of star and cyp17a1 in GCF fish. No clear difference in growth was detected between GCF and immature WT fish, while growth was compromised in maturing WT males. We demonstrate for the first time in a vertebrate that germ cells are required for pubertal activation of the somatic steroidogenic cells.


Subject(s)
Fish Proteins/genetics , Gonadal Steroid Hormones/genetics , Puberty/genetics , Salmo salar/genetics , Sex Determination Processes , Animals , Female , Gene Expression Regulation, Developmental , Gene Knock-In Techniques , Germ Cells/growth & development , Germ Cells/metabolism , Gonadal Steroid Hormones/biosynthesis , Male , Oocytes/growth & development , Puberty/physiology , Salmo salar/growth & development , Sexual Maturation/genetics
15.
Sci Rep ; 6: 21284, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26888627

ABSTRACT

Introgression of farmed salmon escapees into wild stocks is a major threat to the genetic integrity of wild populations. Using germ cell-free fish in aquaculture may mitigate this problem. Our study investigated whether it is possible to produce germ cell-free salmon in F0 by using CRISPR-Cas9 to knock out dnd, a factor required for germ cell survival in vertebrates. To avoid studying mosaic animals, sgRNA targeting alb was simultaneously used as a visual tracer since the phenotype of alb KO is complete loss of pigmentation. Induced mutations for the tracer (alb) and the target (dnd) genes were highly correlated and produced germ cell-less fish lacking pigmentation, underlining the suitability of alb KO to serve as tracer for targeted double allelic mutations in F0 animals in species with prohibitively long generation times. This is also the first report describing dnd knockout in any fish species. Analyzing gene expression and histology of dnd KO fish revealed that sex differentiation of the somatic compartment does not depend on the presence of germ cells. However, the organization of the ovarian somatic compartment seems compromised in mutant fish.


Subject(s)
Fish Proteins/genetics , Gene Knockdown Techniques , Germ Cells/metabolism , RNA-Binding Proteins/genetics , Salmo salar , Sex Differentiation/genetics , Animals , CRISPR-Cas Systems , Female , Fish Proteins/metabolism , Male , RNA-Binding Proteins/metabolism , Salmo salar/genetics , Salmo salar/metabolism
16.
Int J Mol Sci ; 16(9): 21658-80, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26370983

ABSTRACT

To facilitate efficient drug delivery to tumor tissue, several nanomaterials have been designed, with combined diagnostic and therapeutic properties. In this work, we carried out fundamental in vitro and in vivo experiments to assess the labeling efficacy of our novel theranostic nanoprobe, consisting of glycogen conjugated with a red fluorescent probe and gadolinium. Microscopy and resazurin viability assays were used to study cell labeling and cell viability in human metastatic melanoma cell lines. Fluorescence lifetime correlation spectroscopy (FLCS) was done to investigate nanoprobe stability. Magnetic resonance imaging (MRI) was performed to study T1 relaxivity in vitro, and contrast enhancement in a subcutaneous in vivo tumor model. Efficient cell labeling was demonstrated, while cell viability, cell migration, and cell growth was not affected. FLCS showed that the nanoprobe did not degrade in blood plasma. MRI demonstrated that down to 750 cells/µL of labeled cells in agar phantoms could be detected. In vivo MRI showed that contrast enhancement in tumors was comparable between Omniscan contrast agent and the nanoprobe. In conclusion, we demonstrate for the first time that a non-toxic glycogen-based nanoprobe may effectively visualize tumor cells and tissue, and, in future experiments, we will investigate its therapeutic potential by conjugating therapeutic compounds to the nanoprobe.


Subject(s)
Melanoma/metabolism , Melanoma/pathology , Molecular Imaging/methods , Molecular Probes , Multimodal Imaging , Nanotechnology , Cell Line, Tumor , Cell Movement , Cell Survival , Contrast Media/chemistry , Cytoplasm/metabolism , Glycogen/metabolism , Humans , Hydrogen-Ion Concentration , Lysosomes/metabolism , Magnetic Resonance Imaging/methods , Spectrometry, Fluorescence , Staining and Labeling
17.
FASEB J ; 29(11): 4695-712, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26220176

ABSTRACT

Intercellular communication between cancer cells, especially between cancer and stromal cells, plays an important role in disease progression. We examined the intercellular transfer of organelles and proteins in vitro and in vivo and the role of tunneling nanotubes (TNTs) in this process. TNTs are membrane bridges that facilitate intercellular transfer of organelles of unclear origin. Using 3-dimensional quantitative and qualitative confocal microscopy, we showed that TNTs contain green fluorescent protein (GFP)-early endosome antigen (EEA) 1, GFP Rab5, GFP Rab11, GFP Rab8, transferrin (Tf), and Tf receptor (Tf-R) fused to mCherry (Tf-RmCherry). Tf-RmCherry was transferred between cancer cells by a contact-dependent but secretion-independent mechanism. Live cell imaging showed TNT formation preceding the transfer of Tf-RmCherry and involving the function of the small guanosine triphosphatase (GTPase) Rab8, which colocalized with Tf-RmCherry in the TNTs and was cotransferred to acceptor cells. Tf-RmCherry was transferred from cancer cells to fibroblasts, a noteworthy finding that suggests that this process occurs between tumor and stromal cells in vivo. We strengthened this hypothesis in a xenograft model of breast cancer using enhanced (e)GFP-expressing mice. Tf-RmCherry transferred from tumor to stromal cells and this process correlated with an increased opposite transfer of eGFP from stromal to tumor cells, together pointing toward complex intercellular communication at the tumor site.


Subject(s)
Breast Neoplasms/metabolism , Fibroblasts/metabolism , Neoplasm Proteins/metabolism , Receptors, Transferrin/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Breast Neoplasms/genetics , Fibroblasts/pathology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Heterografts , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Microscopy, Confocal , Neoplasm Proteins/genetics , Neoplasm Transplantation , Protein Transport/genetics , Receptors, Transferrin/genetics , Stromal Cells/metabolism , Stromal Cells/pathology , rab GTP-Binding Proteins/genetics
18.
Neuro Oncol ; 17(10): 1374-85, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25791837

ABSTRACT

BACKGROUND: The key metabolic enzyme lactate dehydrogenase A (LDHA) is overexpressed in many cancers, and several preclinical studies have shown encouraging results of targeted inhibition. However, the mechanistic importance of LDHA in melanoma is largely unknown and hitherto unexplored in brain metastasis. METHODS: We investigated the spatial, temporal, and functional features of LDHA expression in melanoma brain metastasis across multiple in vitro assays, in a robust and predictive animal model employing MRI and PET imaging, and in a unique cohort of 80 operated patients. We further assessed the genomic and proteomic landscapes of LDHA in different cancers, particularly melanomas. RESULTS: LDHA expression was especially strong in early and small brain metastases in vivo and related to intratumoral hypoxia in late and large brain metastases in vivo and in patients. However, LDHA expression in human brain metastases was not associated with the number of tumors, BRAF(V600E) status, or survival. Moreover, LDHA depletion by small hairpin RNA interference did not affect cell proliferation or 3D tumorsphere growth in vitro or brain metastasis formation or survival in vivo. Integrated analyses of the genomic and proteomic landscapes of LDHA indicated that LDHA is present but not imperative for tumor progression within the CNS, or predictive of survival in melanoma patients. CONCLUSIONS: In a large patient cohort and in a robust animal model, we show that although LDHA expression varies biphasically during melanoma brain metastasis formation, tumor progression and survival seem to be functionally independent of LDHA.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/secondary , L-Lactate Dehydrogenase/metabolism , Melanoma/pathology , Animals , Cell Hypoxia , Cell Line, Tumor , Female , Gene Knockdown Techniques , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , L-Lactate Dehydrogenase/genetics , Lactate Dehydrogenase 5 , Mice , Survival Analysis
19.
J Transl Med ; 12: 278, 2014 Oct 04.
Article in English | MEDLINE | ID: mdl-25280402

ABSTRACT

BACKGROUND: Although several studies suggest that stromal fibroblasts mediate treatment resistance in several cancer types, little is known about how tumor-associated astrocytes modulate the treatment response in brain tumors. Since traditionally used metabolic assays do not distinguish metabolic activity between stromal and tumor cells, and since 2-dimensional co-culture system does not recreate the formidable complexity of the microenvironment within 3-dimensional structures such as solid tumor tissue, we instead established a glioblastoma (GBM) cell-specific bioluminescent assay for direct measurements of tumor cell viability in the treatment of clinical relevant drugs. METHODS: Using lentiviral transfection, we established a panel of human GBM cell lines constitutively expressing a fusion transgene encoding luciferase and the enhanced green fluorescence protein (eGFP). We then initiated co-cultures with immortalized astrocytes, TNC-1, and the eGFP/Luc GBM cell lines. Next, we treated all eGFP/Luc GBM cell lines with Temozolomide (TMZ) or Doxorubicin, comparing co-cultures of glioblastoma (GBM) cells and TNC-1 astrocytes with mono-cultures of eGFP/Luc GBM cells. Cell viability was quantitated by measuring the luciferase expression. RESULTS: Titration experiments demonstrated that luciferase expression was proportional to the number of eGFP/Luc GBM cells, whereas it was not influenced by the number of TNC-1 cells present. Notably, the presence of TNC-1 astrocytes mediated significantly higher cell survival after TMZ treatment in the U251, C6, A172 cell lines as well as the in vivo propagated primary GBM tumor cell line (P3). Moreover, TNC-1 astrocytes mediated significantly higher survival after Doxorubicin treatment in the U251, and LN18 glioma cell lines. CONCLUSION: Glioma cell-specific bioluminescent assay is a reliable tool for assessment of cell viability in the brain tumor cell compartment following drug treatment. Moreover, we have applied this assay to demonstrate that astrocytes can modulate chemo sensitivity of GBM tumor cells. These effects varied both with the cell line and cytotoxic drug that were used, suggesting that several mechanisms may be involved.


Subject(s)
Astrocytes/pathology , Brain Neoplasms/pathology , Coculture Techniques/methods , Drug Resistance, Neoplasm , Glioblastoma/pathology , Luminescence , Models, Biological , Astrocytes/drug effects , Astrocytes/metabolism , Brain Neoplasms/drug therapy , Cell Compartmentation , Cell Count , Cell Line, Tumor , Cell Survival/drug effects , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Resistance, Neoplasm/drug effects , Glioblastoma/drug therapy , Humans , Reproducibility of Results , Spheroids, Cellular/pathology , Stromal Cells/drug effects , Stromal Cells/metabolism , Temozolomide
20.
PLoS One ; 9(9): e108622, 2014.
Article in English | MEDLINE | ID: mdl-25254960

ABSTRACT

Understanding the biological function behind key proteins is of great concern in Atlantic salmon, both due to a high commercial importance and an interesting life history. Until recently, functional studies in salmonids appeared to be difficult. However, the recent discovery of targeted mutagenesis using the CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated) system enables performing functional studies in Atlantic salmon to a great extent. We used the CRISPR/Cas9 system to target two genes involved in pigmentation, tyrosinase (tyr) and solute carrier family 45, member 2 (slc45a2). Embryos were assayed for mutation rates at the 17 somite stage, where 40 and 22% of all injected embryos showed a high degree of mutation induction for slc45a2 and tyr, respectively. At hatching this mutation frequency was also visible for both targeted genes, displaying a graded phenotype ranging from complete lack of pigmentation to partial loss and normal pigmentation. CRISPRslc45a2/Cas9 injected embryos showing a complete lack of pigmentation or just a few spots of pigments also lacked wild type sequences when assaying more than 80 (slc45a2) sequence clones from whole embryos. This indicates that CRISPR/Cas9 can induce double-allelic knockout in the F0 generation. However, types and frequency of indels might affect the phenotype. Therefore, the variation of indels was assayed in the graded pigmentation phenotypes produced by CRISPR/Cas9-slc45a2. The results show a tendency for fewer types of indels formed in juveniles completely lacking pigmentation compared to juveniles displaying partial pigmentation. Another interesting observation was a high degree of the same indel type in different juveniles. This study shows for the first time successful use of the CRISPR/Cas9 technology in a marine cold water species. Targeted double-allelic mutations were obtained and, though the level of mosaicism has to be considered, we demonstrate that F0 fish can be used for functional studies in Atlantic salmon.


Subject(s)
CRISPR-Cas Systems , Gene Knockout Techniques , Gene Targeting , Mutagenesis , Salmo salar/genetics , Animals , Animals, Genetically Modified , Gene Targeting/methods , Mutation Rate , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...